Suppr超能文献

正常和加速伤口愈合过程中的巨噬细胞分化

Macrophage Differentiation in Normal and Accelerated Wound Healing.

作者信息

Kotwal Girish J, Chien Sufan

机构信息

Noveratech LLC, Louisville, KY, USA.

Department of Surgery, University of Louisville, School of Medicine, Louisville, KY, USA.

出版信息

Results Probl Cell Differ. 2017;62:353-364. doi: 10.1007/978-3-319-54090-0_14.

Abstract

Chronic wounds pose considerable public health challenges and burden. Wound healing is known to require the participation of macrophages, but mechanisms remain unclear. The M1 phenotype macrophages have a known scavenger function, but they also play multiple roles in tissue repair and regeneration when they transition to an M2 phenotype. Macrophage precursors (mononuclear cells/monocytes) follow the influx of PMN neutrophils into a wound during the natural wound-healing process, to become the major cells in the wound. Natural wound-healing process is a four-phase progression consisting of hemostasis, inflammation, proliferation, and remodeling. A lag phase of 3-6 days precedes the remodeling phase, which is characterized by fibroblast activation and finally collagen production. This normal wound-healing process can be accelerated by the intracellular delivery of ATP to wound tissue. This novel ATP-mediated acceleration arises due to an alternative activation of the M1 to M2 transition (macrophage polarization), a central and critical feature of the wound-healing process. This response is also characterized by an early increased release of pro-inflammatory cytokines (TNF, IL-1 beta, IL-6), a chemokine (MCP-1), an activation of purinergic receptors (a family of plasma membrane receptors found in almost all mammalian cells), and an increased production of platelets and platelet microparticles. These factors trigger a massive influx of macrophages, as well as in situ proliferation of the resident macrophages and increased synthesis of VEGFs. These responses are followed, in turn, by rapid neovascularization and collagen production by the macrophages, resulting in wound covering with granulation tissue within 24 h.

摘要

慢性伤口给公共卫生带来了巨大挑战和负担。已知伤口愈合需要巨噬细胞的参与,但其机制尚不清楚。M1表型巨噬细胞具有已知的清除功能,但当它们转变为M2表型时,在组织修复和再生中也发挥多种作用。在自然伤口愈合过程中,巨噬细胞前体(单核细胞/单核)跟随PMN中性粒细胞流入伤口,成为伤口中的主要细胞。自然伤口愈合过程是一个由止血、炎症、增殖和重塑组成的四阶段进程。在重塑阶段之前有一个3 - 6天的延迟期,其特征是成纤维细胞活化并最终产生胶原蛋白。通过将ATP细胞内递送至伤口组织可加速这种正常的伤口愈合过程。这种由ATP介导的新型加速现象源于M1向M2转变(巨噬细胞极化)的替代激活,这是伤口愈合过程的核心和关键特征。这种反应的特征还包括促炎细胞因子(TNF、IL - 1β、IL - 6)、趋化因子(MCP - 1)的早期释放增加,嘌呤能受体(几乎在所有哺乳动物细胞中发现的一类质膜受体)的激活,以及血小板和血小板微粒的产生增加。这些因素引发巨噬细胞的大量涌入,以及驻留巨噬细胞的原位增殖和VEGF合成增加。继而,这些反应之后是巨噬细胞迅速进行新血管生成和胶原蛋白产生,导致在24小时内伤口被肉芽组织覆盖。

相似文献

1
Macrophage Differentiation in Normal and Accelerated Wound Healing.
Results Probl Cell Differ. 2017;62:353-364. doi: 10.1007/978-3-319-54090-0_14.
2
Pivotal role of ATP in macrophages fast tracking wound repair and regeneration.
Wound Repair Regen. 2015 Sep;23(5):724-7. doi: 10.1111/wrr.12323. Epub 2015 Sep 14.
3
Rapid tissue regeneration induced by intracellular ATP delivery-A preliminary mechanistic study.
PLoS One. 2017 Apr 5;12(4):e0174899. doi: 10.1371/journal.pone.0174899. eCollection 2017.
4
Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.
Cell Biol Int. 2018 Jul;42(7):877-889. doi: 10.1002/cbin.10955. Epub 2018 Mar 14.
5
Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.
Int J Mol Sci. 2017 Jul 17;18(7):1545. doi: 10.3390/ijms18071545.
7
Macrophages in skin injury and repair.
Immunobiology. 2011 Jul;216(7):753-62. doi: 10.1016/j.imbio.2011.01.001. Epub 2011 Jan 8.
8
Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing.
J Immunol. 2017 Jul 1;199(1):17-24. doi: 10.4049/jimmunol.1700223.
9
Selective M2 Macrophage Depletion Leads to Prolonged Inflammation in Surgical Wounds.
Eur Surg Res. 2017;58(3-4):109-120. doi: 10.1159/000451078. Epub 2017 Jan 6.
10

引用本文的文献

1
The role of multi-omics in biomarker discovery, diagnosis, prognosis, and therapeutic monitoring of tissue repair and regeneration processes.
J Orthop Translat. 2025 Aug 8;54:131-151. doi: 10.1016/j.jot.2025.07.006. eCollection 2025 Sep.
2
Naringenin Accelerates Diabetic Wound Healing via Regulating Macrophage M2 Polarization and Efferocytosis.
Food Sci Nutr. 2025 Aug 1;13(8):e70688. doi: 10.1002/fsn3.70688. eCollection 2025 Aug.
4
Systemic immune response alteration in patients with severe pressure ulcers.
Sci Rep. 2025 Jun 4;15(1):19579. doi: 10.1038/s41598-025-04710-0.
6
Extracellular vesicles: innovative cell-free solutions for wound repair.
Front Bioeng Biotechnol. 2025 Apr 3;13:1571461. doi: 10.3389/fbioe.2025.1571461. eCollection 2025.
8
Neutrophil Heterogeneity in Wound Healing.
Biomedicines. 2025 Mar 12;13(3):694. doi: 10.3390/biomedicines13030694.
9
Mechanisms of Impaired Wound Healing in Type 2 Diabetes: The Role of Epigenetic Factors.
Arterioscler Thromb Vasc Biol. 2025 May;45(5):632-642. doi: 10.1161/ATVBAHA.124.321446. Epub 2025 Mar 20.

本文引用的文献

1
Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design.
Exp Biol Med (Maywood). 2016 May;241(10):1084-97. doi: 10.1177/1535370216650293.
2
Macrophages: A review of their role in wound healing and their therapeutic use.
Wound Repair Regen. 2016 Jul;24(4):613-29. doi: 10.1111/wrr.12444. Epub 2016 Jun 14.
3
Drug delivery strategies to control macrophages for tissue repair and regeneration.
Exp Biol Med (Maywood). 2016 May;241(10):1054-63. doi: 10.1177/1535370216649444. Epub 2016 May 6.
4
Transition from inflammation to proliferation: a critical step during wound healing.
Cell Mol Life Sci. 2016 Oct;73(20):3861-85. doi: 10.1007/s00018-016-2268-0. Epub 2016 May 14.
5
Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation.
Wound Repair Regen. 2016 Jul;24(4):644-56. doi: 10.1111/wrr.12442. Epub 2016 Jun 14.
6
Epigenetic Control of Macrophage Polarisation and Soluble Mediator Gene Expression during Inflammation.
Mediators Inflamm. 2016;2016:6591703. doi: 10.1155/2016/6591703. Epub 2016 Apr 10.
7
SOCS3 is a modulator of human macrophage phagocytosis.
J Leukoc Biol. 2016 Oct;100(4):771-780. doi: 10.1189/jlb.3A1215-554RR. Epub 2016 Apr 22.
8
Pivotal role of ATP in macrophages fast tracking wound repair and regeneration.
Wound Repair Regen. 2015 Sep;23(5):724-7. doi: 10.1111/wrr.12323. Epub 2015 Sep 14.
9
Rapid granulation tissue regeneration by intracellular ATP delivery--a comparison with Regranex.
PLoS One. 2014 Mar 17;9(3):e91787. doi: 10.1371/journal.pone.0091787. eCollection 2014.
10
Regulation of Macrophage Polarization and Wound Healing.
Adv Wound Care (New Rochelle). 2012 Feb;1(1):10-16. doi: 10.1089/wound.2011.0307.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验