Zdanowicz Rafal, Kreutzberger Alex, Liang Binyong, Kiessling Volker, Tamm Lukas K, Cafiso David S
Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
Biophys J. 2017 Sep 19;113(6):1235-1250. doi: 10.1016/j.bpj.2017.04.002. Epub 2017 Apr 26.
Complexin-1 is a SNARE effector protein that decreases spontaneous neurotransmitter release and enhances evoked release. Complexin binds to the fully assembled four-helical neuronal SNARE core complex as revealed in competing molecular models derived from x-ray crystallography. Presently, it is unclear how complexin binding to the postfusion complex accounts for its effects upon spontaneous and evoked release in vivo. Using a combination of spectroscopic and imaging methods, we characterize in molecular detail how complexin binds to the 1:1 plasma membrane t-SNARE complex of syntaxin-1a and SNAP-25 while simultaneously binding the lipid bilayer at both its N- and C-terminal ends. These interactions are cooperative, and binding to the prefusion acceptor t-SNARE complex is stronger than to the postfusion core complex. This complexin interaction reduces the affinity of synaptobrevin-2 for the 1:1 complex, thereby retarding SNARE assembly and vesicle docking in vitro. The results provide the basis for molecular models that account for the observed clamping effect of complexin beginning with the acceptor t-SNARE complex and the subsequent activation of the clamped complex by Ca and synaptotagmin.
复合体蛋白-1是一种SNARE效应蛋白,可减少神经递质的自发释放并增强诱发释放。如X射线晶体学推导的竞争分子模型所示,复合体蛋白与完全组装好的四螺旋神经元SNARE核心复合体结合。目前尚不清楚复合体蛋白与融合后复合体的结合如何解释其在体内对自发释放和诱发释放的影响。我们结合光谱学和成像方法,从分子细节上表征了复合体蛋白如何与 syntaxin-1a和SNAP-25的1:1质膜t-SNARE复合体结合,同时在其N端和C端与脂质双层结合。这些相互作用是协同的,并且与融合前受体t-SNARE复合体的结合比与融合后核心复合体的结合更强。这种复合体蛋白相互作用降低了突触小泡蛋白-2对1:1复合体的亲和力,从而在体外延迟了SNARE组装和囊泡对接。这些结果为分子模型提供了基础,该模型解释了从受体t-SNARE复合体开始观察到的复合体蛋白的钳制效应,以及随后Ca和突触结合蛋白对被钳制复合体的激活。