Zhao Yuanzheng, Zhang Min, Liu Hengfang, Wang Jianping
Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
Neurosci Lett. 2017 Jun 9;651:36-42. doi: 10.1016/j.neulet.2017.04.055. Epub 2017 Apr 27.
Growth/differentiation factor-5 (GDF-5), a member of the transforming growth factor-beta (TGF-β) superfamily, has been shown to protect rat dopaminergic neurons against insult both in embryonic neuronal culture and in Parkinson's disease models. However, whether GDF-5 exerts neuroprotective effects in hippocampal neurons is unclear. Here, we show that both mRNA levels and protein levels of GDF-5 are decreased in the mouse hippocampus upon kainic acid (KA) treatment. KA induced dramatic neuronal loss specifically in the cornu ammonis 1 (CA1) and CA3 areas of the mouse hippocampus, while intracerebral infusion of GDF-5 prevented this neuronal loss. The neuroprotective effects of GDF-5 were recapitulated by constitutively active bone morphogenetic protein type IB receptor (BMPRIB-CA) and could be blocked by BMPRI kinase inhibitor LDN-193189. Furthermore, the neuroprotective effects of GDF-5 were mediated through the prevention of apoptosis, which was indicated by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining and reduced cleaved caspase 3 expression level. Thus, we conclude that GDF-5 protects hippocampal neurons against KA-induced neurodegeneration by signaling through BMPRIB, suggesting a therapeutic potential for GDF-5 in neurodegenerative diseases.