Suppr超能文献

一种共轭吡咯并哒嗪二酮-苯并二噻吩(PPD-BDT)共聚物的合成及其在有机和混合太阳能电池中的应用。

Synthesis of a conjugated pyrrolopyridazinedione-benzodithiophene (PPD-BDT) copolymer and its application in organic and hybrid solar cells.

作者信息

Knall Astrid-Caroline, Jones Andrew O F, Kunert Birgit, Resel Roland, Reishofer David, Zach Peter W, Kirkus Mindaugas, McCulloch Iain, Rath Thomas

机构信息

Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.

Department of Chemistry and Centre for Plastic Electronics, Imperial College London, Imperial College Road, London, SW7 2AZ UK.

出版信息

Monatsh Chem. 2017;148(5):855-862. doi: 10.1007/s00706-017-1949-1. Epub 2017 Mar 30.

Abstract

ABSTRACT

Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PCBM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.

摘要

摘要

在此,我们描述了一种由吡咯并哒嗪二酮(PPD)受体单元和苯并二噻吩(BDT)供体单元组成的共轭供体-受体共聚物的合成与表征。聚合反应通过Stille交叉偶联缩聚进行。所得的PPD-BDT共聚物显示出1.8 eV的光学带隙,并且在氯苯溶液中具有良好的加工性能。在与PCBM组合的有机太阳能电池中,该聚合物实现了4.5%的功率转换效率。此外,使用无毒的CuInS纳米晶体作为无机相,在聚合物/纳米晶体混合太阳能电池中评估了该共聚物的性能,这些纳米晶体是由前驱体直接在聚合物基质中制备的,无需使用额外的封端配体。PPD-BDT/CuInS混合太阳能电池表现出相当高的光电压和2.2%的功率转换效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/545e/5387020/be66707bfc0f/706_2017_1949_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验