Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, Canada.
Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
J Affect Disord. 2017 Aug 15;218:75-81. doi: 10.1016/j.jad.2017.04.060. Epub 2017 Apr 26.
Treatment resistant depression (TRD) remains a clinical challenge, and finding biomarkers that predict treatment response are a long sought goal to precisely indicate treatments. This pilot study aims to characterize brain dysfunction in TRD patients who underwent rTMS to define neuroimaging biomarkers that discriminate non-responders (NR) from responders (R).
20 TRD patients who underwent a course of rTMS to the left DLPFC were categorized into R and NR groups based on a >50% reduction in HRSD scores. Utilizing resting-state fMRI and ICA techniques, this study compared baseline RSNs of R vs. NR as well as TRD vs. healthy volunteer group. Regression analysis was conducted to link regions with clinical improvements. ROC analysis was further conducted to confirm the utility of the identified regions in classifying the patients.
Prior to treatment, non-responders displayed hyper-connectivity in ACC/VMPFC, PCC/pC, dACC and insula within RSNs that have been associated with MDD pathology. Regression results showed that regions associated with clinical improvements overlapped largely with regions that showed aberrant connectivity. ACC/VMPFC, dACC and left insula, which are hub regions of DMN and SN, exhibited excellent performance (highest sensitivity=100% and highest specificity=82%) in discriminating the response status of the patients.
Relatively small sample size.
Our findings provide insight into fMRI predictive measures of treatment response to rTMS treatment, and demonstrate the potential of RSNs-based biomarkers in predicting response to rTMS treatment. Future studies are needed to validate the application of these measures to inform individual treatment indications.
治疗抵抗性抑郁症(TRD)仍然是一个临床挑战,寻找能够预测治疗反应的生物标志物是一个长期以来的目标,旨在准确指示治疗方法。本研究旨在通过对接受 rTMS 治疗的 TRD 患者的脑功能障碍进行特征描述,以确定区分无反应者(NR)和反应者(R)的神经影像学生物标志物。
根据 HRSD 评分降低超过 50%,将 20 名接受左侧背外侧前额叶 rTMS 治疗的 TRD 患者分为 R 和 NR 组。本研究利用静息态 fMRI 和 ICA 技术,比较了 R 与 NR 以及 TRD 与健康志愿者组的基线 RSN。进行回归分析以将与临床改善相关的区域联系起来。进一步进行 ROC 分析以确认所确定区域在分类患者中的效用。
在治疗前,NR 在与 MDD 病理相关的 RSN 中显示出 ACC/VMPFC、PCC/pC、dACC 和岛叶的过度连接。回归结果表明,与临床改善相关的区域与显示异常连接的区域大部分重叠。DMN 和 SN 的枢纽区域 ACC/VMPFC、dACC 和左侧岛叶在区分患者的反应状态方面表现出出色的性能(最高敏感性=100%,最高特异性=82%)。
样本量相对较小。
我们的研究结果为 rTMS 治疗反应的 fMRI 预测指标提供了深入的了解,并证明了基于 RSN 的生物标志物在预测 rTMS 治疗反应方面的潜力。需要进一步的研究来验证这些措施的应用,以告知个体治疗指征。