Suppr超能文献

频域光学相干断层扫描仪(Spectralis SD OCT)自动黄斑层分割对正常与早期青光眼眼的诊断准确性。

Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes.

机构信息

Department of Ophthalmology, Hospital de l'Esperança-Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain; Institut Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Institut de la Màcula, Centre Mèdic Teknon, Barcelona, Spain.

Department of Ophthalmology, Hospital de l'Esperança-Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain; Department of Retina, Institut Català de la Retina (ICR), Barcelona, Spain.

出版信息

Ophthalmology. 2017 Aug;124(8):1218-1228. doi: 10.1016/j.ophtha.2017.03.044. Epub 2017 Apr 29.

Abstract

PURPOSE

To evaluate the accuracy of the macular retinal layer segmentation software of the Spectralis spectral-domain (SD) optical coherence tomography (OCT) device (Heidelberg Engineering, Inc., Heidelberg, Germany) to discriminate between healthy and early glaucoma (EG) eyes.

DESIGN

Prospective, cross-sectional study.

PARTICIPANTS

Forty EG eyes and 40 healthy controls were included.

METHODS

All participants were examined using the standard posterior pole and the peripapillary retinal nerve fiber layer (pRNFL) protocols of the Spectralis OCT device. Using an Early Treatment Diagnostic Retinopathy Study circle at the macular level, the automated retinal segmentation software was applied to determine thicknesses of the following parameters: total retinal thickness, inner retinal layer (IRL), macular retinal nerve fiber layer (mRNFL), macular ganglion cell layer (mGCL), macular inner plexiform layer (mIPL), macular inner nuclear layer (mINL), macular outer plexiform layer (mOPL), macular outer nuclear layer (mONL), photoreceptors (PR), and retinal pigmentary epithelium (RPE). The ganglion cell complex (GCC) was determined by adding the mRNFL, mGCL, and mIPL parameters and the ganglion cell layer-inner plexiform layer (mGCL-IPL) was determined by combining the mGCL and mIPL parameters. Thickness of each layer was compared between the groups, and the layer and sector with the best area under the receiver operating characteristic curve (AUC) were identified.

MAIN OUTCOME MEASURES

Comparison of pRNFL, IRL, mRNFL, mGCL, mIPL, mGCC, mGCL-IPL, mINL, mOPL, mONL, PR, and RPE parameters and total retinal thicknesses between groups for the different areas and their corresponding AUCs.

RESULTS

Peripapillary RNFL was significantly thinner in the EG group globally and in all 6 sectors assessed (P < 0.0005). For the macular variables, retinal thickness was significantly reduced in the EG group for total retinal thickness, mIRL, mRNFL, mGCL, and mIPL. The 2 best isolated parameters to discriminate between the 2 groups were pRNFL (AUC, 0.956) and mRNFL (AUC, 0.906). When mRNFL, mGCL, and mIPL measurements were combined (mGCC and mGCL plus mIPL), then its diagnostic performance improved (AUC, 0.940 and 0.952, respectively).

CONCLUSIONS

Macular RNFL, mGCL-IPL, and mGCC measurements showed a high diagnostic capability to discriminate between healthy and EG participants. However, macular intraretinal measurements still have not overcome standard pRNFL parameters.

摘要

目的

评估海德堡光谱光学相干断层扫描仪(Spectralis)中黄斑视网膜层分割软件在区分健康人和早期青光眼(EG)眼中的准确性。

设计

前瞻性、横断面研究。

参与者

40 只 EG 眼和 40 只健康对照纳入研究。

方法

所有参与者均采用 Spectralis OCT 设备的标准后极和视盘周围神经纤维层(pRNFL)方案进行检查。使用黄斑水平的早期治疗糖尿病视网膜病变研究环,自动视网膜分割软件用于确定以下参数的厚度:总视网膜厚度、内视网膜层(IRL)、黄斑视网膜神经纤维层(mRNFL)、黄斑神经节细胞层(mGCL)、黄斑内丛状层(mIPL)、黄斑内核层(mINL)、黄斑外丛状层(mOPL)、黄斑外核层(mONL)、光感受器(PR)和视网膜色素上皮(RPE)。通过添加 mRNFL、mGCL 和 mIPL 参数确定神经节细胞复合体(GCC),通过结合 mGCL 和 mIPL 参数确定 mGCL-IPL。比较各组之间各层的厚度,并确定具有最佳受试者工作特征曲线(ROC)下面积(AUC)的层和扇区。

主要观察指标

比较不同区域的 pRNFL、IRL、mRNFL、mGCL、mIPL、mGCC、mGCL-IPL、mINL、mOPL、mONL、PR 和 RPE 参数以及总视网膜厚度,并比较其 AUC。

结果

EG 组在全局和所有 6 个评估区域的 pRNFL 明显变薄(P < 0.0005)。对于黄斑变量,EG 组的总视网膜厚度、mIRL、mRNFL、mGCL 和 mIPL 均显著降低。区分两组的 2 个最佳独立参数为 pRNFL(AUC,0.956)和 mRNFL(AUC,0.906)。当 mRNFL、mGCL 和 mIPL 测量值组合(mGCC 和 mGCL 加 mIPL)时,其诊断性能得到改善(AUC 分别为 0.940 和 0.952)。

结论

黄斑 RNFL、mGCL-IPL 和 mGCC 测量值具有区分健康人和 EG 参与者的高诊断能力。然而,黄斑内视网膜测量值仍然没有超过标准的 pRNFL 参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验