Wang Yiming, Landry Aaron P, Ding Huangen
From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803.
From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
J Biol Chem. 2017 Jun 16;292(24):10061-10067. doi: 10.1074/jbc.M117.789800. Epub 2017 May 1.
Increasing evidence suggests that mitoNEET, a target of the type II diabetes drug pioglitazone, is a key regulator of energy metabolism in mitochondria. MitoNEET is anchored to the mitochondrial outer membrane via its N-terminal α helix domain and hosts a redox-active [2Fe-2S] cluster in its C-terminal cytosolic region. The mechanism by which mitoNEET regulates energy metabolism in mitochondria, however, is not fully understood. Previous studies have shown that mitoNEET specifically interacts with the reduced flavin mononucleotide (FMNH) and that FMNH can quickly reduce the mitoNEET [2Fe-2S] clusters. Here we report that the reduced mitoNEET [2Fe-2S] clusters can be readily oxidized by oxygen. In the presence of FMN, NADH, and flavin reductase, which reduces FMN to FMNH using NADH as the electron donor, mitoNEET mediates oxidation of NADH with a concomitant reduction of oxygen. Ubiquinone-2, an analog of ubiquinone-10, can also oxidize the reduced mitoNEET [2Fe-2S] clusters under anaerobic or aerobic conditions. Compared with oxygen, ubiquinone-2 is more efficient in oxidizing the mitoNEET [2Fe-2S] clusters, suggesting that ubiquinone could be an intrinsic electron acceptor of the reduced mitoNEET [2Fe-2S] clusters in mitochondria. Pioglitazone or its analog NL-1 appears to inhibit the electron transfer activity of mitoNEET by forming a unique complex with mitoNEET and FMNH The results suggest that mitoNEET is a redox enzyme that may promote oxidation of NADH to facilitate enhanced glycolysis in the cytosol and that pioglitazone may regulate energy metabolism in mitochondria by inhibiting the electron transfer activity of mitoNEET.
越来越多的证据表明,米托萘醌(mitoNEET)作为治疗II型糖尿病药物吡格列酮的靶点,是线粒体能量代谢的关键调节因子。米托萘醌通过其N端α螺旋结构域锚定在线粒体外膜上,并在其C端胞质区域容纳一个具有氧化还原活性的[2Fe-2S]簇。然而,米托萘醌调节线粒体能量代谢的机制尚未完全清楚。先前的研究表明,米托萘醌与还原型黄素单核苷酸(FMNH)特异性相互作用,并且FMNH可以迅速还原米托萘醌的[2Fe-2S]簇。在此我们报告,还原型米托萘醌的[2Fe-2S]簇很容易被氧气氧化。在FMN、NADH和黄素还原酶(以NADH作为电子供体将FMN还原为FMNH)存在的情况下,米托萘醌介导NADH的氧化,同时氧气被还原。泛醌-2是泛醌-10的类似物,在厌氧或需氧条件下也能氧化还原型米托萘醌的[2Fe-2S]簇。与氧气相比,泛醌-2氧化米托萘醌的[2Fe-2S]簇效率更高,这表明泛醌可能是线粒体中还原型米托萘醌的[2Fe-2S]簇的内在电子受体。吡格列酮或其类似物NL-1似乎通过与米托萘醌和FMNH形成独特的复合物来抑制米托萘醌的电子传递活性。结果表明,米托萘醌是一种氧化还原酶,可能促进NADH的氧化以促进细胞质中糖酵解的增强,并且吡格列酮可能通过抑制米托萘醌的电子传递活性来调节线粒体中的能量代谢。