Suppr超能文献

线粒体外膜蛋白 mitoNEET 的电子转移动力学。

Electron transfer kinetics of the mitochondrial outer membrane protein mitoNEET.

机构信息

Laboratory of Molecular Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

出版信息

Free Radic Biol Med. 2018 Jun;121:98-104. doi: 10.1016/j.freeradbiomed.2018.04.569. Epub 2018 Apr 25.

Abstract

Increasing evidence suggests that the mitochondrial outer membrane protein mitoNEET is a key regulator of energy metabolism, iron homeostasis, and production of reactive oxygen species in mitochondria. Previously, we reported that mitoNEET is a redox enzyme that catalyzes electron transfer from the reduced flavin mononucleotide (FMNH) to oxygen or ubiquinone via its unique [2Fe-2S] clusters. Here, we explore the reduction and oxidation kinetics of the mitoNEET [2Fe-2S] clusters under anaerobic and aerobic conditions. We find that the mitoNEET [2Fe-2S] clusters are rapidly reduced by a catalytic amount of FMNH which is reduced by flavin reductase and an equivalent amount of NADH under anaerobic conditions. When the reduced mitoNEET [2Fe-2S] clusters are exposed to air, the [2Fe-2S] clusters are slowly oxidized by oxygen at a rate constant of about 6.0 M s. Compared with oxygen, ubiquinone-2 has a much higher activity to oxidize the reduced mitoNEET [2Fe-2S] clusters at a rate constant of about 3.0 × 10 M s under anaerobic conditions. Under aerobic conditions, the mitoNEET [2Fe-2S] clusters can still be reduced by FMNH in the presence of flavin reductase and excess NADH. However, when NADH is completely consumed, the reduced mitoNEET [2Fe-2S] clusters are gradually oxidized by oxygen. Addition of ubiquinone-2 also rapidly oxidizes the pre-reduced mitoNEET [2Fe-2S] clusters and effectively prevents the FMNH-mediated reduction of the mitoNEET [2Fe-2S] clusters under aerobic conditions. The results suggest that ubiquinone may act as an intrinsic oxidant of the reduced mitoNEET [2Fe-2S] clusters in mitochondria under aerobic and anaerobic conditions.

摘要

越来越多的证据表明,线粒体外膜蛋白 mitoNEET 是调节线粒体能量代谢、铁稳态和活性氧生成的关键调节因子。此前,我们报道 mitoNEET 是一种氧化还原酶,可通过其独特的 [2Fe-2S] 簇催化还原黄素单核苷酸 (FMNH) 向氧或泛醌的电子转移。在这里,我们探索了 mitoNEET [2Fe-2S] 簇在厌氧和需氧条件下的还原和氧化动力学。我们发现,mitoNEET [2Fe-2S] 簇可被催化量的 FMNH 快速还原,而 FMNH 是由黄素还原酶和当量的 NADH 在厌氧条件下还原的。当还原的 mitoNEET [2Fe-2S] 簇暴露于空气中时,[2Fe-2S] 簇会以约 6.0 M s 的速率常数被氧气缓慢氧化。与氧气相比,在厌氧条件下,泛醌-2 氧化还原的还原 mitoNEET [2Fe-2S] 簇的速率常数约为 3.0×10 M s。在需氧条件下,存在黄素还原酶和过量的 NADH 时,mitoNEET [2Fe-2S] 簇仍可被 FMNH 还原。然而,当 NADH 完全消耗时,还原的 mitoNEET [2Fe-2S] 簇会逐渐被氧气氧化。添加泛醌-2 也会迅速氧化预还原的 mitoNEET [2Fe-2S] 簇,并在需氧条件下有效阻止 FMNH 介导的 mitoNEET [2Fe-2S] 簇还原。结果表明,在需氧和厌氧条件下,泛醌可能作为线粒体中还原的 mitoNEET [2Fe-2S] 簇的内在氧化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验