Suppr超能文献

两种种群动态详细模型的比较

Comparison of Two Detailed Models of Population Dynamics.

作者信息

Legros Mathieu, Otero Marcelo, Aznar Victoria Romeo, Solari Hernan, Gould Fred, Lloyd Alun L

机构信息

Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA.

ETH Zürich, Institut für Integrative Biologie, Universitätstrasse 16, 8092 Zürich, Switzerland.

出版信息

Ecosphere. 2016 Oct;7(10). doi: 10.1002/ecs2.1515. Epub 2016 Oct 19.

Abstract

The success of control programs for mosquito borne diseases can be enhanced by crucial information provided by models of the mosquito populations. Models, however, can differ in their structure, complexity and biological assumptions, and these differences impact their predictions. Unfortunately, it is typically difficult to determine why two complex models make different predictions because we lack structured side-by-side comparisons of models using comparable parameterization. Here we present a detailed comparison of two complex, spatially-explicit, stochastic models of the population dynamics of , the main vector of dengue, yellow fever, chikungunya and Zika viruses. Both models describe the mosquito's biological and ecological characteristics, but differ in complexity and specific assumptions. We compare the predictions of these models in two selected climatic settings, a tropical and weakly seasonal climate in Iquitos, Peru, and a temperate and strongly seasonal climate in Buenos Aires, Argentina. Both models were calibrated to operate at identical average densities in unperturbed conditions in both settings, by adjusting parameters regulating densities in each model (number of larval development sites and amount of nutritional resources). We show that the models differ in their sensitivity to environmental conditions (temperature and rainfall), and trace differences to specific model assumptions. Temporal dynamics of the populations predicted by the two models differ more markedly under strongly seasonal Buenos Aires conditions. We use both models to simulate killing of larvae and/or adults with insecticides in selected areas. We show that predictions of population recovery by the models differ substantially, an effect likely related to model assumptions regarding larval development and (direct or delayed) density dependence. Our methodical comparison provides important guidance for model improvement by identifying key areas of ecology that substantially affect model predictions, and revealing the impact of model assumptions on population dynamics predictions in unperturbed and perturbed conditions.

摘要

蚊媒疾病控制项目的成功可以通过蚊虫种群模型提供的关键信息得到加强。然而,模型在结构、复杂性和生物学假设方面可能存在差异,这些差异会影响它们的预测。不幸的是,通常很难确定为什么两个复杂模型会做出不同的预测,因为我们缺乏对使用可比参数化的模型进行结构化的并排比较。在这里,我们对登革热、黄热病、基孔肯雅热和寨卡病毒的主要传播媒介埃及伊蚊种群动态的两个复杂的、空间明确的随机模型进行了详细比较。两个模型都描述了蚊子的生物学和生态学特征,但在复杂性和具体假设上有所不同。我们在两个选定的气候环境中比较了这些模型的预测结果,一个是秘鲁伊基托斯的热带和弱季节性气候,另一个是阿根廷布宜诺斯艾利斯的温带和强季节性气候。通过调整每个模型中调节密度的参数(幼虫发育场所数量和营养资源量),两个模型都被校准为在两种环境的未受干扰条件下以相同的平均密度运行。我们表明,这些模型对环境条件(温度和降雨)的敏感性不同,并将差异追溯到特定的模型假设。在布宜诺斯艾利斯强烈的季节性条件下,两个模型预测的埃及伊蚊种群的时间动态差异更为明显。我们使用这两个模型来模拟在选定区域用杀虫剂杀死幼虫和/或成虫的情况。我们表明,模型对种群恢复的预测有很大差异,这种影响可能与模型关于幼虫发育和(直接或延迟)密度依赖性的假设有关。我们的系统比较通过确定对模型预测有重大影响的埃及伊蚊生态学关键领域,并揭示模型假设在未受干扰和受干扰条件下对种群动态预测的影响,为模型改进提供了重要指导。

相似文献

1
Comparison of Two Detailed Models of Population Dynamics.
Ecosphere. 2016 Oct;7(10). doi: 10.1002/ecs2.1515. Epub 2016 Oct 19.
2
Evaluation of location-specific predictions by a detailed simulation model of Aedes aegypti populations.
PLoS One. 2011;6(7):e22701. doi: 10.1371/journal.pone.0022701. Epub 2011 Jul 25.
4
5
A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate.
Bull Math Biol. 2006 Nov;68(8):1945-74. doi: 10.1007/s11538-006-9067-y. Epub 2006 Jul 11.
6
Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics.
PLoS Negl Trop Dis. 2010 Sep 28;4(9):e830. doi: 10.1371/journal.pntd.0000830.
8
Long-term spatio-temporal dynamics of the mosquito Aedes aegypti in temperate Argentina.
Bull Entomol Res. 2017 Apr;107(2):225-233. doi: 10.1017/S0007485316000869. Epub 2016 Nov 23.
10
Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate.
PLoS One. 2018 Dec 31;13(12):e0210122. doi: 10.1371/journal.pone.0210122. eCollection 2018.

引用本文的文献

1
Fusing an agent-based model of mosquito population dynamics with a statistical reconstruction of spatio-temporal abundance patterns.
PLoS Comput Biol. 2023 Apr 27;19(4):e1010424. doi: 10.1371/journal.pcbi.1010424. eCollection 2023 Apr.
2
Association Between Hydrological Conditions and Dengue Fever Incidence in Coastal Southeastern China From 2013 to 2019.
JAMA Netw Open. 2023 Jan 3;6(1):e2249440. doi: 10.1001/jamanetworkopen.2022.49440.
3
5
Historical changes in plant water use and need in the continental United States.
PLoS One. 2021 Sep 2;16(9):e0256586. doi: 10.1371/journal.pone.0256586. eCollection 2021.
6
Construction sites in Miami-Dade County, Florida are highly favorable environments for vector mosquitoes.
PLoS One. 2018 Dec 20;13(12):e0209625. doi: 10.1371/journal.pone.0209625. eCollection 2018.

本文引用的文献

1
Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease.
N Engl J Med. 2015 Sep 24;373(13):1195-206. doi: 10.1056/NEJMoa1506223. Epub 2015 Jul 27.
2
Zika virus: following the path of dengue and chikungunya?
Lancet. 2015 Jul 18;386(9990):243-4. doi: 10.1016/S0140-6736(15)61273-9.
3
A critical assessment of vector control for dengue prevention.
PLoS Negl Trop Dis. 2015 May 7;9(5):e0003655. doi: 10.1371/journal.pntd.0003655. eCollection 2015 May.
4
A model for the development of Aedes (Stegomyia) aegypti as a function of the available food.
J Theor Biol. 2015 Jan 21;365:311-24. doi: 10.1016/j.jtbi.2014.10.016. Epub 2014 Oct 24.
5
Efficacy of a tetravalent dengue vaccine in children in Latin America.
N Engl J Med. 2015 Jan 8;372(2):113-23. doi: 10.1056/NEJMoa1411037. Epub 2014 Nov 3.
7
Regulation of Aedes aegypti population dynamics in field systems: quantifying direct and delayed density dependence.
Am J Trop Med Hyg. 2013 Jul;89(1):68-77. doi: 10.4269/ajtmh.12-0378. Epub 2013 May 13.
8
The global distribution and burden of dengue.
Nature. 2013 Apr 25;496(7446):504-7. doi: 10.1038/nature12060. Epub 2013 Apr 7.
9
Beyond insecticides: new thinking on an ancient problem.
Nat Rev Microbiol. 2013 Mar;11(3):181-93. doi: 10.1038/nrmicro2968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验