Suppr超能文献

从第一性原理看电催化反应动力学:与从头热力学方法的批判性比较。

Kinetics of Electrocatalytic Reactions from First-Principles: A Critical Comparison with the Ab Initio Thermodynamics Approach.

机构信息

Physical Chemistry Department, Justus-Liebig-University Giessen , Heinrich-Buff-Ring 17, 35392 Giessen, Germany.

Institute of Electrochemistry, Ulm University , Albert-Einstein-Allee 47, 89069 Ulm, Germany.

出版信息

Acc Chem Res. 2017 May 16;50(5):1240-1247. doi: 10.1021/acs.accounts.7b00077. Epub 2017 May 2.

Abstract

Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a simple ab initio thermodynamics treatment. We show that ab initio thermodynamics leads to erroneous conclusions about kinetic and mechanistic aspects for the CER over RuO(110), while the kinetics of the OER over RuO(110) and ORR over Pt(111) are reasonably well described. Microkinetics of an electrocatalyzed reaction is largely simplified by the quasi-equilibria of the RI preceding the rate-determining step (rds) with the reactants. Therefore, in ab initio kinetics the rate of an electrocatalyzed reaction is governed by the transition state (TS) with the highest free energy G, defining also the rate-determining step (rds). Ab initio thermodynamics may be even more powerful, when using the highest free energy of an reaction intermediate G(RI) rather than the highest free energy difference between consecutive reaction intermediates, ΔG, as a descriptor for the kinetics.

摘要

电化学中的多电子过程要求在每个基本反应步骤后在电极表面稳定反应中间体 (RI)。因此,这些中间体的键强度对于评估电极材料的催化性能很重要。现代电催化研究中对微观过程的当前理解在很大程度上由理论驱动,主要基于从头算热力学考虑,其中在电极表面识别稳定的反应中间体,而实际的自由能势垒(或活化势垒)被忽略。这种简单的方法在电化学中很流行,因为研究人员手头有一个简单的工具,可以成功地寻找有前途的电极材料。从头算 TD 方法允许以低计算成本对参数空间进行粗略但快速的筛选。然而,从头算热力学也经常被采用(通常甚至仅基于单个结合能)来理解电化学反应的活性和机制。基本思想是,一个吸能反应步骤的活化势垒由热力学部分和额外的动力学确定的势垒组成。假设活化势垒与热力学(所谓的 Brønsted-Polanyi-Evans (BEP) 关系)成比例,并且动力学部分的势垒很小,从头算热力学可以为电化学反应动力学提供分子见解。然而,对于许多电催化反应,这些隐含的假设被违反,因此从头算热力学将导致与实验数据和从头算动力学的矛盾。在本综述中,我们将讨论包括氯代反应 (CER)、氧代反应 (OER) 和氧还原 (ORR) 在内的几个电化学关键反应,其中可以获得从头算动力学数据,以便将结果与从简单从头算热力学处理得出的结果进行批判性比较。我们表明,从头算热力学导致对 RuO(110) 上 CER 的动力学和机理方面的错误结论,而 RuO(110) 上的 OER 和 Pt(111) 上的 ORR 的动力学则得到很好的描述。反应中间体与反应物之间的准平衡极大地简化了电催化反应的微观动力学。因此,在从头算动力学中,电催化反应的速率由具有最高自由能 G 的过渡态 (TS) 决定,该自由能 G 也定义了速率决定步骤 (rds)。当使用反应中间体 G(RI) 的最高自由能而不是连续反应中间体之间的最高自由能差 ΔG 作为动力学描述符时,从头算热力学可能更强大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验