Salinas Gustavo, Gao Wei, Wang Yang, Bonilla Mariana, Yu Long, Novikov Andrey, Virginio Veridiana G, Ferreira Henrique B, Vieites Marisol, Gladyshev Vadim N, Gambino Dinorah, Dai Shaodong
1 Worm Biology Lab, Institut Pasteur de Montevideo , Montevideo, Uruguay .
2 Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República , Montevideo, Uruguay .
Antioxid Redox Signal. 2017 Dec 20;27(18):1491-1504. doi: 10.1089/ars.2016.6816. Epub 2017 Jun 26.
New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with Au-MPO, a novel gold inhibitor, together with inhibition assays were performed.
Au-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer-monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys and Cys in the Au-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site.
The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments.
The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys and Cys residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491-1504.
需要新的药物来治疗导致严重人类疾病(如血吸虫病)的扁虫感染。独特的扁虫酶硫氧还蛋白谷胱甘肽还原酶(TGR),其结构与人类酶不同,是一个关键的药物靶点。对细粒棘球绦虫TGR进行了结构研究,包括其游离状态以及与新型金抑制剂Au-MPO形成复合物的状态,并进行了抑制试验。
Au-MPO是一种有效的TGR抑制剂,在TGR与Au的比例为1:1时能达到75%的抑制率,并能在体外有效杀死细粒棘球绦虫。这些结构揭示了一些重要见解:(i)独特的单体-单体相互作用;(ii)硫氧还蛋白和谷氧还蛋白(Grx)结构域的不同结合位点;(iii)Grx结构域中的单个谷胱甘肽二硫化物还原位点;(iv)Grx结构域向含硒氧化还原活性位点的旋转;(v)在Au-TGR复合物中,单个金原子与半胱氨酸和半胱氨酸结合。结构建模表明这些残基参与了含硒C末端的稳定。一致地,这些残基中的半胱氨酸→丝氨酸突变降低了TGR活性。质谱证实这些半胱氨酸是主要结合位点。
金结合主要位点的鉴定和结构模型为通过支架调整优化金化合物提供了基础。
结构研究表明,TGR的功能不仅通过含移动硒的氧化还原中心实现,还通过Grx结构域的旋转以及Grx结构域和硫氧还蛋白的不同结合位点实现。金靶向的保守半胱氨酸和半胱氨酸残基通过稳定含硒氧化还原中心来辅助催化。《抗氧化与氧化还原信号》27,1491 - 1504。