Bonilla Mariana, Denicola Ana, Novoselov Sergey V, Turanov Anton A, Protasio Anna, Izmendi Darwin, Gladyshev Vadim N, Salinas Gustavo
Cátedra de Inmunología, Facultad de Química-Facultad de Ciencias, Instituto de Higiene, Universidad de la República, Piso 2, Montevideo, Uruguay.
J Biol Chem. 2008 Jun 27;283(26):17898-907. doi: 10.1074/jbc.M710609200. Epub 2008 Apr 11.
Platyhelminth parasites are a major health problem in developing countries. In contrast to their mammalian hosts, platyhelminth thiol-disulfide redox homeostasis relies on linked thioredoxin-glutathione systems, which are fully dependent on thioredoxin-glutathione reductase (TGR), a promising drug target. TGR is a homodimeric enzyme comprising a glutaredoxin domain and thioredoxin reductase (TR) domains with a C-terminal redox center containing selenocysteine (Sec). In this study, we demonstrate the existence of functional linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of Echinococcus granulosus, the platyhelminth responsible for hydatid disease. The glutathione reductase (GR) activity of TGR exhibited hysteretic behavior regulated by the [GSSG]/[GSH] ratio. This behavior was associated with glutathionylation by GSSG and abolished by deglutathionylation. The K(m) and k(cat) values for mitochondrial and cytosolic thioredoxins (9.5 microm and 131 s(-1), 34 microm and 197 s(-1), respectively) were higher than those reported for mammalian TRs. Analysis of TGR mutants revealed that the glutaredoxin domain is required for the GR activity but did not affect the TR activity. In contrast, both GR and TR activities were dependent on the Sec-containing redox center. The activity loss caused by the Sec-to-Cys mutation could be partially compensated by a Cys-to-Sec mutation of the neighboring residue, indicating that Sec can support catalysis at this alternative position. Consistent with the essential role of TGR in redox control, 2.5 microm auranofin, a known TGR inhibitor, killed larval worms in vitro. These studies establish the selenium- and glutathione-dependent regulation of cytosolic and mitochondrial redox homeostasis through a single TGR enzyme in platyhelminths.
扁形虫寄生虫是发展中国家的一个主要健康问题。与它们的哺乳动物宿主不同,扁形虫的硫醇-二硫化物氧化还原稳态依赖于相连的硫氧还蛋白-谷胱甘肽系统,该系统完全依赖于硫氧还蛋白-谷胱甘肽还原酶(TGR),这是一个有前景的药物靶点。TGR是一种同二聚体酶,由一个谷氧还蛋白结构域和硫氧还蛋白还原酶(TR)结构域组成,其C端氧化还原中心含有硒代半胱氨酸(Sec)。在本研究中,我们证明了细粒棘球绦虫(导致包虫病的扁形虫)的胞质和线粒体区室中存在功能性相连的硫氧还蛋白-谷胱甘肽系统。TGR的谷胱甘肽还原酶(GR)活性表现出受[GSSG]/[GSH]比值调节的滞后行为。这种行为与GSSG的谷胱甘肽化有关,并通过去谷胱甘肽化消除。线粒体和胞质硫氧还蛋白的K(m)和k(cat)值(分别为9.5微摩尔和131 s(-1),34微摩尔和197 s(-1))高于哺乳动物TR报道的值。对TGR突变体的分析表明,谷氧还蛋白结构域是GR活性所必需的,但不影响TR活性。相反,GR和TR活性都依赖于含Sec的氧化还原中心。Sec到Cys突变导致的活性丧失可以通过相邻残基的Cys到Sec突变部分补偿,表明Sec可以在这个替代位置支持催化作用。与TGR在氧化还原控制中的重要作用一致,2.5微摩尔的金诺芬(一种已知的TGR抑制剂)在体外杀死了幼虫。这些研究通过扁形虫中的单一TGR酶建立了硒和谷胱甘肽依赖性的胞质和线粒体氧化还原稳态调节。