Zhao Xiaojun, Wang Hui, Zhai Gaohong, Wang Gang
Key Laboratory of Synthetic and Nature Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China.
Department of Chemistry and Chemical Engineering, Ankang University, Ankang, Shaanxi, 725000, P.R. China.
Chemistry. 2017 May 23;23(29):7037-7045. doi: 10.1002/chem.201604828. Epub 2017 May 2.
Rechargeable lithium-sulfur (Li-S) batteries are receiving much attention due to their high specific capacity, low cost, and environmental friendliness. Nonetheless, fast capacity decay and low specific capacity still limit their practical implementation. Herein, we report a facile strategy to overcome these challenges by the design and fabrication of 3D porous reduced graphene oxide/ultrathin MnO nanosheets-S aerogel (rGM-SA) composites for Li-S batteries. By a simple solvothermal reaction process, nanosized S atoms are homogeneously decorated into the 3D scaffold formed by reduced graphene oxide (rGO) and MnO nanosheets, which can form the homogeneous rGM-SA composites. In this porous network architecture, rGO serves as an electron and ion transfer pathway, a physical adsorption site for polysulfides, and provides structural stability. The ultrathin MnO nanosheets provide strong binding sites for trapping polysulfide intermediates. The 3D porous rGO/MnO architecture enables rapid ion transport and buffers volume expansion of sulfur during discharge. The rGM-SA composites can be directly used as lithium-sulfur battery cathodes without using binder and conductive additive. As a result of this multifunctional arrangement, the rGM-SA composites exhibit high and stable-specific capacities over 200 cycles and excellent high-rate performances.
可充电锂硫(Li-S)电池因其高比容量、低成本和环境友好性而备受关注。尽管如此,快速的容量衰减和低比容量仍然限制了它们的实际应用。在此,我们报告了一种简便的策略,通过设计和制备用于锂硫电池的三维多孔还原氧化石墨烯/超薄MnO纳米片-S气凝胶(rGM-SA)复合材料来克服这些挑战。通过简单的溶剂热反应过程,纳米级的S原子被均匀地修饰到由还原氧化石墨烯(rGO)和MnO纳米片形成的三维支架中,从而形成均匀的rGM-SA复合材料。在这种多孔网络结构中,rGO充当电子和离子传输通道、多硫化物的物理吸附位点,并提供结构稳定性。超薄MnO纳米片为捕获多硫化物中间体提供了强结合位点。三维多孔rGO/MnO结构能够实现快速离子传输,并缓冲放电过程中硫的体积膨胀。rGM-SA复合材料无需使用粘结剂和导电添加剂即可直接用作锂硫电池的阴极。由于这种多功能的结构安排,rGM-SA复合材料在超过200次循环中表现出高且稳定的比容量以及优异的高倍率性能。