Otis James M, Mueller Devin
Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.
Neuropsychopharmacology. 2017 Sep;42(10):2000-2010. doi: 10.1038/npp.2017.90. Epub 2017 May 3.
Addiction is characterized by abnormalities in prefrontal cortex that are thought to allow drug-associated cues to drive compulsive drug seeking and taking. Identification and reversal of these pathologic neuroadaptations are therefore critical for treatment of addiction. Previous studies using rodents reveal that drugs of abuse cause dendritic spine plasticity in prelimbic medial prefrontal cortex (PL-mPFC) pyramidal neurons, a phenomenon that correlates with the strength of drug-associated memories in vivo. Thus, we hypothesized that cocaine-evoked plasticity in PL-mPFC may underlie cocaine-associated memory retrieval, and therefore disruption of this plasticity would prevent retrieval. Indeed, using patch clamp electrophysiology we find that cocaine place conditioning increases excitatory presynaptic and postsynaptic transmission in rat PL-mPFC pyramidal neurons. This was accounted for by increases in excitatory presynaptic release, paired-pulse facilitation, and increased AMPA receptor transmission. Noradrenergic signaling is known to maintain glutamatergic plasticity upon reactivation of modified circuits, and we therefore next determined whether inhibition of noradrenergic signaling during memory reactivation would reverse the cocaine-evoked plasticity and/or disrupt the cocaine-associated memory. We find that administration of the β-adrenergic receptor antagonist propranolol before memory retrieval, but not after (during memory reconsolidation), reverses the cocaine-evoked presynaptic and postsynaptic modifications in PL-mPFC and causes long-lasting memory impairments. Taken together, these data reveal that cocaine-evoked synaptic plasticity in PL-mPFC is reversible in vivo, and suggest a novel strategy that would allow normalization of prefrontal circuitry in addiction.
成瘾的特征是前额叶皮质出现异常,这些异常被认为会使与药物相关的线索驱动强迫性的药物寻求和使用行为。因此,识别并逆转这些病理性神经适应性变化对于成瘾治疗至关重要。先前使用啮齿动物的研究表明,滥用药物会导致前边缘内侧前额叶皮质(PL-mPFC)锥体神经元的树突棘可塑性,这一现象与体内与药物相关记忆的强度相关。因此,我们推测PL-mPFC中可卡因诱发的可塑性可能是可卡因相关记忆检索的基础,因此破坏这种可塑性将阻止记忆检索。事实上,通过膜片钳电生理学方法,我们发现可卡因位置条件反射增加了大鼠PL-mPFC锥体神经元的兴奋性突触前和突触后传递。这是由兴奋性突触前释放增加、双脉冲易化以及AMPA受体传递增加所导致的。已知去甲肾上腺素能信号在修饰回路重新激活时维持谷氨酸能可塑性,因此我们接下来确定在记忆重新激活期间抑制去甲肾上腺素能信号是否会逆转可卡因诱发的可塑性和/或破坏与可卡因相关的记忆。我们发现,在记忆检索前而非之后(在记忆重新巩固期间)给予β-肾上腺素能受体拮抗剂普萘洛尔,可逆转PL-mPFC中可卡因诱发的突触前和突触后修饰,并导致长期记忆障碍。综上所述,这些数据表明PL-mPFC中可卡因诱发的突触可塑性在体内是可逆的,并提出了一种可使成瘾前额叶回路正常化的新策略。