Suppr超能文献

一个深内含子 CLRN1(USH3A)的致病变异体导致一个异常外显子,从而导致在阿拉伯半岛上严重的 Usher 综合征。

A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula.

机构信息

Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.

Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2017 May 3;7(1):1411. doi: 10.1038/s41598-017-01577-8.

Abstract

Deafblindness is mostly due to Usher syndrome caused by recessive mutations in the known genes. Mutation-negative patients therefore either have distinct diseases, mutations in yet unknown Usher genes or in extra-exonic parts of the known genes - to date a largely unexplored possibility. In a consanguineous Saudi family segregating Usher syndrome type 1 (USH1), NGS of genes for Usher syndrome, deafness and retinal dystrophy and subsequent whole-exome sequencing each failed to identify a mutation. Genome-wide linkage analysis revealed two small candidate regions on chromosome 3, one containing the USH3A gene CLRN1, which has never been associated with Usher syndrome in Saudi Arabia. Whole-genome sequencing (WGS) identified a homozygous deep intronic mutation, c.254-649T > G, predicted to generate a novel donor splice site. CLRN1 minigene-based analysis confirmed the splicing of an aberrant exon due to usage of this novel motif, resulting in a frameshift and a premature termination codon. We identified this mutation in an additional two of seven unrelated mutation-negative Saudi USH1 patients. Locus-specific markers indicated that c.254-649T > G represents a founder allele that may significantly contribute to deafblindness in this population. Our finding underlines the potential of WGS to uncover atypically localized, hidden mutations in patients who lack exonic mutations in the known disease genes.

摘要

聋盲症主要由已知基因隐性突变引起的 Usher 综合征导致。因此,突变阴性患者要么患有明显不同的疾病,要么存在未知的 Usher 基因或已知基因的外显子区域的突变——迄今为止,这是一个很大程度上尚未探索的可能性。在一个分离出 1 型 Usher 综合征(USH1)的沙特阿拉伯近亲家庭中,对 Usher 综合征、耳聋和视网膜营养不良基因进行 NGS 测序以及随后的全外显子组测序均未能发现突变。全基因组连锁分析显示 3 号染色体上有两个小的候选区域,其中一个包含 USH3A 基因 CLRN1,该基因在沙特阿拉伯从未与 Usher 综合征相关。全基因组测序 (WGS) 鉴定出一个纯合的深内含子突变,c.254-649T > G,预测会产生一个新的供体位点。基于 CLRN1 小基因的分析证实了由于使用该新基序导致异常外显子的剪接,从而导致移码和过早终止密码子。我们在另外两名非相关的沙特阿拉伯 USH1 突变阴性患者中发现了这种突变。特异性基因座标记表明,c.254-649T > G 代表一个可能对该人群聋盲症有重大贡献的创始等位基因。我们的发现强调了 WGS 在外显子突变缺失的患者中发现非典型局部、隐性突变的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5588/5431179/c8c230767a24/41598_2017_1577_Fig1_HTML.jpg

相似文献

3
A rare transcript homozygous variants in CLRN1(USH3A) causes Usher syndrome type 3 in a Chinese family.
Orphanet J Rare Dis. 2024 Sep 20;19(1):349. doi: 10.1186/s13023-024-03348-x.
5
Extended mutation spectrum of Usher syndrome in Finland.
Acta Ophthalmol. 2013 Jun;91(4):325-34. doi: 10.1111/j.1755-3768.2012.02397.x. Epub 2012 Jun 8.
6
The Genetics of Usher Syndrome in the Israeli and Palestinian Populations.
Invest Ophthalmol Vis Sci. 2018 Feb 1;59(2):1095-1104. doi: 10.1167/iovs.17-22817.
10
is mutated in a distinct type of Usher syndrome.
J Med Genet. 2017 Mar;54(3):190-195. doi: 10.1136/jmedgenet-2016-104166. Epub 2016 Sep 14.

引用本文的文献

2
Exploring non-coding variants and evaluation of antisense oligonucleotides for splicing redirection in Usher syndrome.
Mol Ther Nucleic Acids. 2024 Oct 28;35(4):102374. doi: 10.1016/j.omtn.2024.102374. eCollection 2024 Dec 10.
3
A Leaky Deep Intronic Splice Variant in Is Associated with Non-Syndromic Retinitis Pigmentosa.
Genes (Basel). 2024 Oct 24;15(11):1363. doi: 10.3390/genes15111363.
4
A rare transcript homozygous variants in CLRN1(USH3A) causes Usher syndrome type 3 in a Chinese family.
Orphanet J Rare Dis. 2024 Sep 20;19(1):349. doi: 10.1186/s13023-024-03348-x.
5
Founder mutations and rare disease in the Arab world.
Dis Model Mech. 2024 Jun 1;17(6). doi: 10.1242/dmm.050715. Epub 2024 Jun 26.
6
Towards a Cure for HARS Disease.
Genes (Basel). 2023 Jan 18;14(2):254. doi: 10.3390/genes14020254.
7
A progeroid syndrome caused by a deep intronic variant in TAPT1 is revealed by RNA/SI-NET sequencing.
EMBO Mol Med. 2023 Feb 8;15(2):e16478. doi: 10.15252/emmm.202216478. Epub 2023 Jan 18.
9
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification.
Hum Genet. 2022 Apr;141(3-4):709-735. doi: 10.1007/s00439-022-02448-7. Epub 2022 Mar 30.

本文引用的文献

1
is mutated in a distinct type of Usher syndrome.
J Med Genet. 2017 Mar;54(3):190-195. doi: 10.1136/jmedgenet-2016-104166. Epub 2016 Sep 14.
3
Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects.
Am J Hum Genet. 2016 Sep 1;99(3):770-776. doi: 10.1016/j.ajhg.2016.07.009.
4
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
6
Looking beyond the genes: the role of non-coding variants in human disease.
Hum Mol Genet. 2016 Oct 1;25(R2):R157-R165. doi: 10.1093/hmg/ddw205. Epub 2016 Jun 27.
7
A small molecule mitigates hearing loss in a mouse model of Usher syndrome III.
Nat Chem Biol. 2016 Jun;12(6):444-51. doi: 10.1038/nchembio.2069. Epub 2016 Apr 25.
8
Whole USH2A Gene Sequencing Identifies Several New Deep Intronic Mutations.
Hum Mutat. 2016 Feb;37(2):184-93. doi: 10.1002/humu.22926. Epub 2015 Nov 23.
10
Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5473-8. doi: 10.1073/pnas.1418631112. Epub 2015 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验