Agúndez M, Cernicharo J, Quintana-Lacaci G, Castro-Carrizo A, Velilla Prieto L, Marcelino N, Guélin M, Joblin C, Martín-Gago J A, Gottlieb C A, Patel N A, McCarthy M C
Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Cantoblanco, Spain.
Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 St. Martin d'Héres, France.
Astron Astrophys. 2017 May;601. doi: 10.1051/0004-6361/201630274.
Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon chains in the C-star envelope IRC +10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of 3 mm rotational lines of the hydrocarbon radicals CH, CH, and CH, and the CN-containing species CN, CN, HCN, and HCN with an angular resolution of ~1″. The spatial distribution of all these species is a hollow, 5-10″ wide, spherical shell located at a radius of 10-20″ from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2″ wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HCN appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of CH and CH radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and CN radicals.
线性碳链在各类天文分子源中很常见。可能的形成机制包括自下而上和自上而下两种途径。我们对C型恒星IRC +10216的包层中碳链的形成进行了观测与建模相结合的研究,在该包层中,紫外线光子引发的乙炔和氰化氢聚合反应能够推动长度不断增加的线性碳链的形成。我们利用阿塔卡马大型毫米/亚毫米波阵列(ALMA)绘制了烃基CH、CH和CH以及含CN物种CN、CN、HCN和HCN的3毫米转动线发射图,角分辨率约为1″。所有这些物种的空间分布是一个中空的、宽5 - 10″的球壳,位于距离恒星10 - 20″的半径处,靠近恒星处没有明显的发射。我们的观测将碳链的宽壳分解为更薄的子壳,这些子壳宽1 - 2″且并非完全同心,这表明质量损失过程是不连续的且并非完全各向同性。所绘制物种的径向分布显示出细微差异:虽然烃基的径向分布非常相似,但含CN物种的分布更为多样,HCN在膨胀过程中出现得更早,而自由基CN比其他物种延伸得更靠后。通过一个化学模型可以解释观测到的形态,在该模型中,聚炔的生长主要由CH和CH自由基与不饱和烃的快速气相化学反应产生,而氰基聚炔主要由聚炔与CN和CN自由基的气相反应形成。