Guélin M, Patel N A, Bremer M, Cernicharo J, Castro-Carrizo A, Pety J, Fonfría J P, Agúndez M, Santander-García M, Quintana-Lacaci G, Velilla Prieto L, Blundell R, Thaddeus P
Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d'Hères, France.
LERMA, Observatoire de Paris, PSL Research University, CNRS, UMR 8112, F-75014, Paris, France.
Astron Astrophys. 2018 Feb;610. doi: 10.1051/0004-6361/201731619. Epub 2018 Feb 7.
During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2-1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2-1), CO(1-0), CN(2-1) and CH(24-23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (< 40″), the shell pattern is denser and less regular, showing intermediary arcs. Outside the small ( < 0.3″) dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km s, with small turbulent motions. Based on that property, we have reconstructed the 3-D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner ( < 25″) envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 years and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years.
在其晚期脉动阶段,渐近巨星分支(AGB)恒星以巨大尘埃包层的形式抛出大部分质量,这一事件在很大程度上控制了星际物质的组成。然而,这些包层距离遥远,对可见光和近红外辐射不透明:它们的结构仍然知之甚少,质量损失过程也 poorly understood(此处原英文有误,推测可能是“poorly understood”,译为“了解甚少”)。毫米波干涉测量法结合了波长较长、角分辨率高和光谱分辨率极高的优点,是用于此目的的最佳探测工具。毫米波几乎无衰减地穿过尘埃。其光谱富含分子线,并包含无处不在的一氧化碳(CO)分子的基本谱线,从而能够对包层结构进行层析重建。恒星周包层IRC +10 216及其中心恒星,即距离太阳最近的富含碳的热脉冲渐近巨星分支(TP - AGB)恒星,是进行此类研究的最佳对象。两年前,我们报告了首次使用IRAM 30米望远镜对该包层中一氧化碳(CO(2 - 1))谱线发射进行的详细研究。研究揭示了一系列密集的气体壳层,以均匀的径向速度膨胀。望远镜的有限分辨率(半高全宽为11英寸)使我们无法分辨壳层结构。我们现在报告使用亚毫米波阵列(SMA)、皮克迪迪埃射电望远镜(PdB)和阿塔卡马大型毫米波/亚毫米波阵列(ALMA)干涉仪对一氧化碳(CO(2 - 1))、一氧化碳(CO(1 - 0))、氰基(CN(2 - 1))和甲基(CH(24 - 23))进行的更高角分辨率观测(合成半功率波束宽度分别为3英寸、1英寸和0.3英寸)。尽管在高分辨率下包层看起来比使用11英寸波束时更加复杂,但其主要结构仍然是由薄的、近乎同心的壳层组成的图案。在外部包层中,最亮的一氧化碳壳层之间的平均间距为16英寸,且看起来非常恒定。靠近恒星(< 40英寸)时,壳层图案更密集且不太规则,呈现出中间弧。在小(< 0.3英寸)尘埃形成区之外,气体似乎以14.5千米/秒的恒定速度径向膨胀,伴有小的湍动。基于这一特性,我们重建了外部包层的三维结构,并推导了内部(< 25英寸)包层中的气体温度和密度径向分布。发现壳层与壳层之间的密度对比度通常为3。过密的壳层具有球形或略扁球形的形状,通常延伸几个球面度,这意味着质量损失是各向同性的。外部包层中壳层的规则间距支持了一个周期为700年且近正面椭圆轨道的双星系统模型。伴星飞越在近日点附近引发了增强的质量损失事件。在包层中心部分观测到的壳层图案的致密化表明在过去几千年中存在更复杂的情况。