Kandemir Ali, Ozden Ayberk, Cagin Tahir, Sevik Cem
Department of Materials Science and Engineering, Izmir Institute of Technology, Izmir, Turkey.
Faculty of Engineering, Department of Material Science and Engineering, Anadolu University, Turkey.
Sci Technol Adv Mater. 2017 Mar 13;18(1):187-196. doi: 10.1080/14686996.2017.1288065. eCollection 2017.
Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.
人们运用了各种理论和实验方法来研究纳米结构材料的热导率;这是提高热电器件性能的一个关键参数。在这些方法中,平衡分子动力学(EMD)是预测晶格热导率的一种精确技术。在本研究中,通过系统的EMD模拟,针对不同的晶体学方向,计算了块状Si-Ge结构(原始结构、合金结构和超晶格结构)及其具有方形和圆形横截面几何形状(不对称和对称)的一维纳米结构形式的热导率。还对选定结构进行了全面的温度分析。结果表明,一维结构在低晶格热导率以及通过纳米结构化(如直径调制、界面粗糙度、周期性和界面数量)实现热导率可调性方面是更优的候选结构。我们发现,热导率随着直径或横截面积减小而降低。此外,界面粗糙度会显著降低热导率。而且,我们预测在对称超晶格结构中存在一个能使热导率最小的特定周期性。热导率降低是由于界面数量的影响决定了弹道输运和波动输运现象的区域,从而导致系统中声子运动减少。在一些纳米结构中,如纳米线超晶格,Si/Ge系统的热导率可以降低到接近非晶硅热导率的两倍。此外,发现在一维和块状SiGe系统中,一种晶体取向[公式:见正文]100[公式:见正文]比[公式:见正文]111[公式:见正文]晶体取向更好。我们的结果清楚地指出了在块状和纳米结构中进行晶格热导率工程以制备高性能热电材料的重要性。