Suppr超能文献

使用分子动力学模拟预测BiTe-SbTe界面电导和超晶格热导率

Prediction of BiTe-SbTe Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations.

作者信息

Roy Chowdhury Prabudhya, Shi Jingjing, Feng Tianli, Ruan Xiulin

机构信息

School of Mechanical Engineering and the Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2088, United States.

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Jan 27;13(3):4636-4642. doi: 10.1021/acsami.0c17851. Epub 2021 Jan 12.

Abstract

Bismuth telluride (BiTe) and its alloys with antimony telluride (SbTe) have long been considered to be the best room-temperature bulk thermoelectric (TE) materials. In recent decades, proof-of-concept demonstrations on BiTe-SbTe nanostructures have shown high TE performance due to reduction in lattice thermal conductivities. Particularly, ultra-low thermal conductivities have been observed in BiTe-SbTe 1D superlattices, leading to thermoelectric figures of merit () as high as 2.4. In contrast, very few computational studies have been performed to provide insight into the phonon transport across these nanostructures. In this work, we use non-equilibrium molecular dynamics simulations with previously developed force fields to simulate thermal transport across BiTe-SbTe interfaces and superlattices. We first calculate the thermal conductance associated with a BiTe-SbTe interface across a temperature range of 200-400 K. The values are also compared with thermal conductances calculated by a modified Landauer transport formalism using phonon transmission coefficients obtained from the diffuse mismatch model. Our results show that inelastic scattering processes contribute to an increase in interfacial thermal conductance at higher temperatures. Finally, we calculate the thermal conductivities of BiTe-SbTe superlattices with varying period lengths from 2 to 18 nm. A minimum thermal conductivity of 0.27 W/mK is observed at a period length of 4 nm, which is attributed to the competition between incoherent and coherent phonon transport regimes. In comparison with previous experimental measurements in the literature, our results show good agreement with respect to the range of thermal conductivity values and the period length corresponding to the minimum superlattice thermal conductivity.

摘要

碲化铋(BiTe)及其与碲化锑(SbTe)的合金长期以来一直被认为是最佳的室温体相热电(TE)材料。近几十年来,关于BiTe - SbTe纳米结构的概念验证演示表明,由于晶格热导率降低,其具有高热电性能。特别是,在BiTe - SbTe一维超晶格中观察到了超低的热导率,导致热电优值高达2.4。相比之下,很少有计算研究能够深入了解这些纳米结构中的声子输运。在这项工作中,我们使用先前开发的力场进行非平衡分子动力学模拟,以模拟BiTe - SbTe界面和超晶格中的热输运。我们首先计算了在200 - 400 K温度范围内与BiTe - SbTe界面相关的热导率。这些值还与使用从扩散失配模型获得的声子传输系数通过改进的朗道尔输运形式计算得到的热导率进行了比较。我们的结果表明,非弹性散射过程在较高温度下会导致界面热导率增加。最后,我们计算了周期长度从2到18 nm变化的BiTe - SbTe超晶格的热导率。在周期长度为4 nm时观察到最低热导率为0.27 W/mK,这归因于非相干和相干声子输运机制之间的竞争。与文献中先前的实验测量结果相比,我们的结果在热导率值范围以及对应于最低超晶格热导率的周期长度方面显示出良好的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验