Suppr超能文献

一种简单的 HIV 传播风险预测算法:来自南非夸祖鲁-纳塔尔省 HIV 预防试验(2002-2012 年)的结果。

A Simple Risk Prediction Algorithm for HIV Transmission: Results from HIV Prevention Trials in KwaZulu Natal, South Africa (2002-2012).

机构信息

Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia.

Biostatistics Unit, South African Medical Research Council, Durban, Kwazulu-Natal, South Africa.

出版信息

AIDS Behav. 2018 Jan;22(1):325-336. doi: 10.1007/s10461-017-1785-7.

Abstract

We aimed to develop a HIV risk scoring algorithm for targeted screening among women in South Africa. We used data from five biomedical intervention trials (N = 8982 Cox regression models were used to create a risk prediction algorithm and it was internally and externally validated using standard statistical measures; 7-factors were identified as significant predictors of HIV infection: <25 years old, being single/not cohabiting, parity (<3), age at sexual debut (<16), 3+ sexual partners, using injectables and diagnosis with a sexually transmitted infection(s). A score of ≥25 (out of 50) was the optimum cut point with 83% (80%) sensitivity in the development (validation) dataset. Our tool can be used in designing future HIV prevention research and guiding recruitment strategies as well as in health care settings. Identifying, targeting and prioritising women at highest risk will have significant impact on preventing new HIV infections by scaling up testing and pre-exposure prophylaxis in conjunction with other HIV prevention modalities.

摘要

我们旨在开发一种针对南非女性的 HIV 风险评分算法,以进行有针对性的筛查。我们使用了来自五项生物医学干预试验的数据(N=8982)。通过 Cox 回归模型创建了风险预测算法,并使用标准统计措施进行了内部和外部验证;确定了 7 个因素是 HIV 感染的显著预测因素:年龄<25 岁、单身/不同居、产次(<3)、首次性行为年龄(<16)、性伴侣超过 3 个、使用注射剂和诊断患有性传播感染。得分≥25 (满分 50)是最佳切点,在开发(验证)数据集的敏感性为 83%(80%)。我们的工具可用于设计未来的 HIV 预防研究和指导招募策略,以及在医疗保健环境中使用。通过扩大检测和暴露前预防的范围,结合其他 HIV 预防手段,识别、瞄准和优先考虑风险最高的女性,将对预防新的 HIV 感染产生重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验