Suppr超能文献

利用时间去趋势分析来观察交通的空间相关性。

Using temporal detrending to observe the spatial correlation of traffic.

作者信息

Ermagun Alireza, Chatterjee Snigdhansu, Levinson David

机构信息

Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, United States of America.

School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS One. 2017 May 4;12(5):e0176853. doi: 10.1371/journal.pone.0176853. eCollection 2017.

Abstract

This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis-St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models.

摘要

这项实证研究揭示了不同交通状态下交通链路的空间相关性。我们通过确定明尼阿波利斯 - 圣保罗高速公路系统一个主要子网中140条高速公路交通链路之间的空间相关性,来模拟真实交通的行为,该子网具有类似网格的网络拓扑结构。这种拓扑结构使我们能够并列分析链路之间的正相关和负相关,而这在短期交通预测模型中一直被忽视。为了准确可靠地测量交通链路之间的相关性,我们开发了一种算法,该算法在三个维度上消除时间趋势:(1)每小时维度,(2)每周维度,以及(3)每个链路的系统维度。交通链路的空间相关性在高峰时段表现出更强的负相关性,此时拥堵会影响路线选择。虽然这种相关性大多出现在平行链路中,但在上游也能观察到,在上游旅行者会获取信息并能够切换到替代路径。无论一天中的时间和一周中的日期如何,上游和下游链路之间都存在很强的正相关性。在非拥堵状态下这种相关性更强,因为交通流通过连续链路的速度更快,并且没有拥堵效应使交通转移或停滞。提取的空间相关性结构可以提高短期交通预测模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3889/5417612/29e4deb5eef5/pone.0176853.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验