Schutsky Emily K, Nabel Christopher S, Davis Amy K F, DeNizio Jamie E, Kohli Rahul M
Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Nucleic Acids Res. 2017 Jul 27;45(13):7655-7665. doi: 10.1093/nar/gkx345.
AID/APOBEC family enzymes are best known for deaminating cytosine bases to uracil in single-stranded DNA, with characteristic sequence preferences that can produce mutational signatures in targets such as retroviral and cancer cell genomes. These deaminases have also been proposed to function in DNA demethylation via deamination of either 5-methylcytosine (mC) or TET-oxidized mC bases (ox-mCs), which include 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. One specific family member, APOBEC3A (A3A), has been shown to readily deaminate mC, raising the prospect of broader activity on ox-mCs. To investigate this claim, we developed a novel assay that allows for parallel profiling of activity on all modified cytosines. Our steady-state kinetic analysis reveals that A3A discriminates against all ox-mCs by >3700-fold, arguing that ox-mC deamination does not contribute substantially to demethylation. A3A is, by contrast, highly proficient at C/mC deamination. Under conditions of excess enzyme, C/mC bases can be deaminated to completion in long DNA segments, regardless of sequence context. Interestingly, under limiting A3A, the sequence preferences observed with targeting unmodified cytosine are further exaggerated when deaminating mC. Our study informs how methylation, oxidation, and deamination can interplay in the genome and suggests A3A's potential utility as a biotechnological tool to discriminate between cytosine modification states.
AID/APOBEC家族酶最广为人知的是将单链DNA中的胞嘧啶碱基脱氨基转化为尿嘧啶,其具有特征性的序列偏好,可在逆转录病毒和癌细胞基因组等靶标中产生突变特征。这些脱氨酶也被认为可通过对5-甲基胞嘧啶(mC)或TET氧化的mC碱基(ox-mC)进行脱氨基作用来参与DNA去甲基化,其中ox-mC包括5-羟甲基胞嘧啶、5-甲酰基胞嘧啶和5-羧基胞嘧啶。一个特定的家族成员APOBEC3A(A3A)已被证明能够轻易地使mC脱氨基,这增加了其对ox-mC具有更广泛活性的可能性。为了研究这一说法,我们开发了一种新型检测方法,可对所有修饰的胞嘧啶的活性进行平行分析。我们的稳态动力学分析表明,A3A对所有ox-mC的区分能力超过3700倍,这表明ox-mC脱氨基对去甲基化的贡献不大。相比之下,A3A在C/mC脱氨基方面表现出很高的效率。在酶过量的条件下,无论序列背景如何,长DNA片段中的C/mC碱基都可以完全脱氨基。有趣的是,在A3A有限的情况下,当对mC进行脱氨基时,靶向未修饰胞嘧啶时观察到的序列偏好会进一步放大。我们的研究揭示了甲基化、氧化和脱氨基在基因组中如何相互作用,并表明A3A作为一种区分胞嘧啶修饰状态的生物技术工具具有潜在用途。