Suppr超能文献

全基因组DNA甲基化分析揭示了区分肥胖个体不同类型脂肪组织的基因座。

Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals.

作者信息

Macartney-Coxson Donia, Benton Miles C, Blick Ray, Stubbs Richard S, Hagan Ronald D, Langston Michael A

机构信息

Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022 New Zealand.

Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059 Australia.

出版信息

Clin Epigenetics. 2017 May 3;9:48. doi: 10.1186/s13148-017-0344-4. eCollection 2017.

Abstract

BACKGROUND

Epigenetic mechanisms provide an interface between environmental factors and the genome and are known to play a role in complex diseases such as obesity. These mechanisms, including DNA methylation, influence the regulation of development, differentiation and the establishment of cellular identity. Here we employ two approaches to identify differential methylation between two white adipose tissue depots in obese individuals before and after gastric bypass and significant weight loss. We analyse genome-wide DNA methylation data using (a) traditional paired tests to identify significantly differentially methylated loci (Bonferroni-adjusted  ≤ 1 × 10) and (b) novel combinatorial algorithms to identify loci that differentiate between tissue types.

RESULTS

Significant differential methylation was observed for 3239 and 7722 CpG sites, including 784 and 1129 extended regions, between adipose tissue types before and after significant weight loss, respectively. The vast majority of these extended differentially methylated regions (702) were consistent across both time points and enriched for genes with a role in transcriptional regulation and/or development (e.g. homeobox genes). Other differentially methylated loci were only observed at one time point and thus potentially highlight genes important to adipose tissue dysfunction observed in obesity. Strong correlations ( > 0.75,  ≤ 0.001) were observed between changes in DNA methylation (subcutaneous adipose vs omentum) and changes in clinical trait, in particular for CpG sites within and fasting glucose and four CpG sites within and HDL. A single CpG site (cg00838040, ) gave strong tissue separation, with validation in independent subcutaneous ( = 681) and omental ( = 33) adipose samples.

CONCLUSIONS

This is the first study to report a genome-wide DNA methylome comparison of subcutaneous abdominal and omental adipose before and after weight loss. The combinatorial approach we utilised is a powerful tool for the identification of methylation loci that strongly differentiate between these tissues. This study provides a solid basis for future research focused on the development of adipose tissue and its potential dysfunction in obesity, as well as the role DNA methylation plays in these processes.

摘要

背景

表观遗传机制在环境因素与基因组之间提供了一个界面,已知其在肥胖等复杂疾病中发挥作用。这些机制,包括DNA甲基化,影响发育、分化的调控以及细胞身份的确立。在此,我们采用两种方法来识别肥胖个体在胃旁路手术前后及显著体重减轻后,两种白色脂肪组织库之间的差异甲基化情况。我们使用(a)传统配对检验分析全基因组DNA甲基化数据,以识别显著差异甲基化位点(经Bonferroni校正,P≤1×10),以及(b)新颖的组合算法来识别区分组织类型的位点。

结果

在显著体重减轻前后,脂肪组织类型之间分别观察到3239个和7722个CpG位点存在显著差异甲基化,包括784个和1129个延伸区域。这些延伸的差异甲基化区域中的绝大多数(702个)在两个时间点上都是一致的,并且富含在转录调控和/或发育中起作用的基因(如同源框基因)。其他差异甲基化位点仅在一个时间点观察到,因此可能突出了肥胖中观察到的对脂肪组织功能障碍重要的基因。在DNA甲基化变化(皮下脂肪与网膜)与临床特征变化之间观察到强相关性(r>0.75,P≤0.001),特别是对于甘油三酯和空腹血糖内的CpG位点以及高密度脂蛋白内的四个CpG位点。单个CpG位点(cg00838040,P<0.0001)实现了强大的组织分离,并在独立的皮下(n = 681)和网膜(n = 33)脂肪样本中得到验证。

结论

这是第一项报告体重减轻前后皮下腹部和网膜脂肪全基因组DNA甲基化组比较的研究。我们使用的组合方法是识别这些组织之间强烈区分的甲基化位点的有力工具。本研究为未来聚焦于脂肪组织发育及其在肥胖中潜在功能障碍,以及DNA甲基化在这些过程中所起作用的研究提供了坚实基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a79/5415776/30675d9fcfb3/13148_2017_344_Fig1_HTML.jpg

相似文献

1
Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals.
Clin Epigenetics. 2017 May 3;9:48. doi: 10.1186/s13148-017-0344-4. eCollection 2017.
4
Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity.
Mol Metab. 2016 Nov 16;6(1):86-100. doi: 10.1016/j.molmet.2016.11.003. eCollection 2017 Jan.
6
The epigenetic signature of systemic insulin resistance in obese women.
Diabetologia. 2016 Nov;59(11):2393-2405. doi: 10.1007/s00125-016-4074-5. Epub 2016 Aug 18.
9
Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model.
BMC Genomics. 2015 Oct 5;16:743. doi: 10.1186/s12864-015-1938-x.
10
Epigenome-wide association in adipose tissue from the METSIM cohort.
Hum Mol Genet. 2018 May 15;27(10):1830-1846. doi: 10.1093/hmg/ddy093.

引用本文的文献

1
Epigenetic Changes Associated With Obesity-related Metabolic Comorbidities.
J Endocr Soc. 2025 Aug 4;9(9):bvaf129. doi: 10.1210/jendso/bvaf129. eCollection 2025 Sep.
4
A graph theoretical approach to experimental prioritization in genome-scale investigations.
Mamm Genome. 2024 Dec;35(4):724-733. doi: 10.1007/s00335-024-10066-z. Epub 2024 Aug 27.
5
A novel imprinted locus on bovine chromosome 18 homologous with human chromosome 16q24.1.
Mol Genet Genomics. 2024 Mar 28;299(1):40. doi: 10.1007/s00438-024-02123-8.
6
Seminar: Scalable Preprocessing Tools for Exposomic Data Analysis.
Environ Health Perspect. 2023 Dec;131(12):124201. doi: 10.1289/EHP12901. Epub 2023 Dec 18.
7
Recent progress in epigenetics of obesity.
Diabetol Metab Syndr. 2022 Nov 17;14(1):171. doi: 10.1186/s13098-022-00947-1.
8
Molecular Subtyping and Outlier Detection in Human Disease Using the Paraclique Algorithm.
Algorithms. 2021 Feb;14(2). doi: 10.3390/a14020063. Epub 2021 Feb 19.
10
DNA Methylation Modulates Aging Process in Adipocytes.
Aging Dis. 2022 Apr 1;13(2):433-446. doi: 10.14336/AD.2021.0904. eCollection 2022 Apr.

本文引用的文献

1
Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity.
Mol Metab. 2016 Nov 16;6(1):86-100. doi: 10.1016/j.molmet.2016.11.003. eCollection 2017 Jan.
2
Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues.
Diabetologia. 2016 Jun;59(6):1075-88. doi: 10.1007/s00125-016-3933-4. Epub 2016 Apr 4.
3
Atp2c2 Is Transcribed From a Unique Transcriptional Start Site in Mouse Pancreatic Acinar Cells.
J Cell Physiol. 2016 Dec;231(12):2768-78. doi: 10.1002/jcp.25391. Epub 2016 Apr 21.
4
Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects.
Trends Pharmacol Sci. 2016 Apr;37(4):303-317. doi: 10.1016/j.tips.2015.11.011. Epub 2015 Dec 14.
5
Wt1, the mesothelium and the origins and heterogeneity of visceral fat progenitors.
Adipocyte. 2015 Jan 29;4(3):217-21. doi: 10.4161/21623945.2014.985009. eCollection 2015 Jul-Sep.
6
MicroRNA-141-3p and miR-200a-3p regulate insulin-like growth factor 2 during mouse placental development.
Mol Cell Endocrinol. 2015 Oct 15;414:186-93. doi: 10.1016/j.mce.2015.07.030. Epub 2015 Aug 3.
8
De novo identification of differentially methylated regions in the human genome.
Epigenetics Chromatin. 2015 Jan 27;8:6. doi: 10.1186/1756-8935-8-6. eCollection 2015.
9
CCAAT/enhancer binding protein β in relation to ER stress, inflammation, and metabolic disturbances.
Biomed Res Int. 2015;2015:324815. doi: 10.1155/2015/324815. Epub 2015 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验