Suppr超能文献

对CFTR和Slo1 BK通道中血红素非依赖性铁与一氧化碳之间相互作用的机制性洞察。

Mechanistic insight into the heme-independent interplay between iron and carbon monoxide in CFTR and Slo1 BK channels.

作者信息

Wang Guangyu

机构信息

Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA.

出版信息

Metallomics. 2017 Jun 1;9(6):634-645. doi: 10.1039/c7mt00065k. Epub 2017 May 5.

Abstract

Ion channels have been extensively reported as effectors of carbon monoxide (CO). However, the mechanisms of heme-independent CO action are still not known. Because most ion channels are heterologously expressed on human embryonic kidney cells that are cultured in Fe-containing media, CO may act as a small and strong iron chelator to disrupt a putative iron bridge in ion channels and thus to tune their activity. In this review CFTR and Slo1 BK channels are employed to discuss the possible heme-independent interplay between iron and CO. Our recent studies demonstrated a high-affinity Fe site at the interface between the regulatory domain and intracellular loop 3 of CFTR. Because the binding of Fe to CFTR prevents channel opening, the stimulatory effect of CO on the Cl and HCO currents across the apical membrane of rat distal colon may be due to the release of inhibitive Fe by CO. In contrast, CO repeatedly stimulates the human Slo1 BK channel opening, possibly by binding to an unknown iron site, because cyanide prohibits this heme-independent CO stimulation. Here, in silico research on recent structural data of the slo1 BK channels indicates two putative binuclear Fe-binding motifs in the gating ring in which CO may compete with protein residues to bind to either Fe bowl to disrupt the Fe bridge but not to release Fe from the channel. Thus, these two new regulation models of CO, with iron releasing from and retaining in the ion channel, may have significant and extensive implications for other metalloproteins.

摘要

离子通道作为一氧化碳(CO)的效应器已被广泛报道。然而,血红素非依赖性CO作用的机制仍不清楚。由于大多数离子通道在含Fe培养基中培养的人胚肾细胞上异源表达,CO可能作为一种小而强的铁螯合剂,破坏离子通道中假定的铁桥,从而调节其活性。在本综述中,以囊性纤维化跨膜传导调节因子(CFTR)和大电导钙激活钾通道(Slo1 BK通道)为例,讨论铁与CO之间可能存在的血红素非依赖性相互作用。我们最近的研究表明,在CFTR的调节结构域与细胞内环3之间的界面处存在一个高亲和力的Fe位点。由于Fe与CFTR的结合会阻止通道开放,CO对大鼠远端结肠顶端膜上Cl和HCO电流的刺激作用可能是由于CO释放了抑制性的Fe。相反,CO反复刺激人Slo1 BK通道开放,可能是通过与一个未知的铁位点结合,因为氰化物会抑制这种血红素非依赖性的CO刺激。在此,对Slo1 BK通道最新结构数据的计算机模拟研究表明,在门控环中有两个假定的双核Fe结合基序,CO可能与蛋白质残基竞争,结合到任一Fe碗上,破坏Fe桥,但不会从通道中释放Fe。因此,这两种新的CO调节模型,即铁从离子通道中释放和保留,可能对其他金属蛋白具有重大而广泛的意义。

相似文献

1
Mechanistic insight into the heme-independent interplay between iron and carbon monoxide in CFTR and Slo1 BK channels.
Metallomics. 2017 Jun 1;9(6):634-645. doi: 10.1039/c7mt00065k. Epub 2017 May 5.
2
Heme regulates allosteric activation of the Slo1 BK channel.
J Gen Physiol. 2005 Jul;126(1):7-21. doi: 10.1085/jgp.200509262. Epub 2005 Jun 13.
3
The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4039-43. doi: 10.1073/pnas.0800304105. Epub 2008 Mar 3.
4
Carbon monoxide-releasing molecules inhibit the cystic fibrosis transmembrane conductance regulator Cl channel.
Am J Physiol Lung Cell Mol Physiol. 2020 Dec 1;319(6):L997-L1009. doi: 10.1152/ajplung.00440.2019. Epub 2020 Sep 16.
5
Fe-Mediated Activation of BK Channels by Rapid Photolysis of CORM-S1 Releasing CO and Fe.
ACS Chem Biol. 2020 Aug 21;15(8):2098-2106. doi: 10.1021/acschembio.0c00282. Epub 2020 Jul 29.
6
A structural motif in the C-terminal tail of slo1 confers carbon monoxide sensitivity to human BK Ca channels.
Pflugers Arch. 2008 Jun;456(3):561-72. doi: 10.1007/s00424-007-0439-4. Epub 2008 Jan 5.
7
Heme is required for carbon monoxide activation of mitochondrial BK channel.
Eur J Pharmacol. 2020 Aug 15;881:173191. doi: 10.1016/j.ejphar.2020.173191. Epub 2020 May 15.
8
Two distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels.
J Gen Physiol. 2015 Apr;145(4):331-43. doi: 10.1085/jgp.201511363.
9
Cholesterol and PIP Modulation of BK Channels.
Adv Exp Med Biol. 2023;1422:217-243. doi: 10.1007/978-3-031-21547-6_8.
10
Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
J Gen Physiol. 2005 Jan;125(1):43-55. doi: 10.1085/jgp.200409174. Epub 2004 Dec 13.

引用本文的文献

2
Understanding the Logistics for the Distribution of Heme in Cells.
JACS Au. 2021 Aug 10;1(10):1541-1555. doi: 10.1021/jacsau.1c00288. eCollection 2021 Oct 25.
4
Cardiac function dependence on carbon monoxide.
Med Gas Res. 2020 Jan-Mar;10(1):37-46. doi: 10.4103/2045-9912.279982.

本文引用的文献

1
Molecular Structure of the Human CFTR Ion Channel.
Cell. 2017 Mar 23;169(1):85-95.e8. doi: 10.1016/j.cell.2017.02.024.
2
Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels.
J Gen Physiol. 2017 Mar 6;149(3):373-387. doi: 10.1085/jgp.201611646. Epub 2017 Feb 14.
3
Effects of on CFTR chloride secretion and the host immune response.
Am J Physiol Cell Physiol. 2017 Apr 1;312(4):C357-C366. doi: 10.1152/ajpcell.00373.2016. Epub 2017 Jan 25.
4
Structural basis for gating the high-conductance Ca-activated K channel.
Nature. 2017 Jan 5;541(7635):52-57. doi: 10.1038/nature20775. Epub 2016 Dec 14.
5
Cryo-EM structure of the open high-conductance Ca-activated K channel.
Nature. 2017 Jan 5;541(7635):46-51. doi: 10.1038/nature20608. Epub 2016 Dec 14.
6
Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14055-14060. doi: 10.1073/pnas.1611415113. Epub 2016 Nov 21.
8
Role of epithelial Na+ channels in endothelial function.
J Cell Sci. 2016 Jan 15;129(2):290-7. doi: 10.1242/jcs.168831. Epub 2015 Nov 30.
9
Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel.
Nature. 2015 Nov 12;527(7577):198-203. doi: 10.1038/nature14958. Epub 2015 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验