Hu Xian, Margadant Felix Martin, Yao Mingxi, Sheetz Michael Patrick
Mechanobiology Institute, National University of Singapore, Singapore, 117411.
Department of Biosciences, University of Oslo, Oslo, 0316, Norway.
Protein Sci. 2017 Jul;26(7):1337-1351. doi: 10.1002/pro.3188. Epub 2017 Jun 6.
For individual cells in tissues to create the diverse forms of biological organisms, it is necessary that they must reliably sense and generate the correct forces over the correct distances and directions. There is considerable evidence that the mechanical aspects of the cellular microenvironment provide critical physical parameters to be sensed. How proteins sense forces and cellular geometry to create the correct morphology is not understood in detail but protein unfolding appears to be a major component in force and displacement sensing. Thus, the crystallographic structure of a protein domain provides only a starting point to then analyze what will be the effects of physiological forces through domain unfolding or catch-bond formation. In this review, we will discuss the recent studies of cytoskeletal and adhesion proteins that describe protein domain dynamics. Forces applied to proteins can activate or inhibit enzymes, increase or decrease protein-protein interactions, activate or inhibit protein substrates, induce catch bonds and regulate interactions with membranes or nucleic acids. Further, the dynamics of stretch-relaxation can average forces or movements to reliably regulate morphogenic movements. In the few cases where single molecule mechanics are studied under physiological conditions such as titin and talin, there are rapid cycles of stretch-relaxation that produce mechanosensing signals. Fortunately, the development of new single molecule and super-resolution imaging methods enable the analysis of single molecule mechanics in physiologically relevant conditions. Thus, we feel that stereotypical changes in cell and tissue shape involve mechanosensing that can be analyzed at the nanometer level to determine the molecular mechanisms involved.
为了使组织中的单个细胞构建出生物有机体的多样形式,它们必须在正确的距离和方向上可靠地感知并产生正确的力。有大量证据表明,细胞微环境的力学方面提供了关键的可感知物理参数。蛋白质如何感知力和细胞几何形状以形成正确的形态尚不清楚,但蛋白质解折叠似乎是力和位移感知的主要组成部分。因此,蛋白质结构域的晶体结构仅仅提供了一个起点,以便随后分析通过结构域解折叠或形成捕获键,生理力将会产生何种影响。在这篇综述中,我们将讨论细胞骨架蛋白和黏附蛋白的最新研究,这些研究描述了蛋白质结构域的动力学。施加于蛋白质的力可以激活或抑制酶,增加或减少蛋白质-蛋白质相互作用,激活或抑制蛋白质底物,诱导捕获键并调节与膜或核酸的相互作用。此外,拉伸-松弛动力学可以对力或运动进行平均,以可靠地调节形态发生运动。在诸如肌联蛋白和踝蛋白等少数在生理条件下研究单分子力学的案例中,存在产生机械传感信号的快速拉伸-松弛循环。幸运的是,新的单分子和超分辨率成像方法的发展使得在生理相关条件下分析单分子力学成为可能。因此,我们认为细胞和组织形状的典型变化涉及机械传感,这种机械传感可以在纳米水平上进行分析,以确定其中涉及的分子机制。