Monogr Soc Res Child Dev. 2017 Jun;82(2):84-104. doi: 10.1111/mono.12300.
In this chapter, we demonstrate the way certain common analytic approaches (e.g., polynomial curve modeling, repeated measures ANOVA, latent curve, and other factor models) create individual difference measures based on a common underlying model. After showing that these approaches require only means and covariance (or correlation) matrices to estimate regression coefficients based on a hypothesized model, we describe how to recast these models based on time-series related approaches focusing on single subject time series approaches (e.g., vector autoregressive approaches and P-technique factor models). We show how these latter methods create parameters based on models that can vary from individual-to-individual. We demonstrate differences for the factor model using real data examples.
在本章中,我们展示了某些常见的分析方法(例如多项式曲线建模、重复测量方差分析、潜在曲线和其他因子模型)如何基于共同的潜在模型创建个体差异度量。在展示了这些方法仅需要均值和协方差(或相关)矩阵来根据假设模型估计回归系数之后,我们描述了如何基于时间序列相关方法(例如向量自回归方法和 P 技术因子模型)重新构建这些模型。我们展示了这些后一种方法如何基于可以因人而异的模型创建参数。我们使用实际数据示例演示了因子模型的差异。