Suppr超能文献

软组织伪影会在髋关节角度和活动范围的计算中导致显著误差。

Soft tissue artifact causes significant errors in the calculation of joint angles and range of motion at the hip.

作者信息

Fiorentino Niccolo M, Atkins Penny R, Kutschke Michael J, Goebel Justine M, Foreman K Bo, Anderson Andrew E

机构信息

Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA.

Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA; Department of Bioengineering, University of Utah, 36 S. Wasatch Drive, Room 3100, Salt Lake City, UT 84112, USA.

出版信息

Gait Posture. 2017 Jun;55:184-190. doi: 10.1016/j.gaitpost.2017.03.033. Epub 2017 Mar 31.

Abstract

Soft tissue movement between reflective skin markers and underlying bone induces errors in gait analysis. These errors are known as soft tissue artifact (STA). Prior studies have not examined how STA affects hip joint angles and range of motion (ROM) during dynamic activities. Herein, we: 1) measured STA of skin markers on the pelvis and thigh during walking, hip abduction and hip rotation, 2) quantified errors in tracking the thigh, pelvis and hip joint angles/ROM, and 3) determined whether model constraints on hip joint degrees of freedom mitigated errors. Eleven asymptomatic young adults were imaged simultaneously with retroreflective skin markers (SM) and dual fluoroscopy (DF), an X-ray technique with sub-millimeter and sub-degree accuracy. STA, defined as the range of SM positions in the DF-measured bone anatomical frame, varied based on marker location, activity and subject. Considering all skin markers and activities, mean STA ranged from 0.3cm to 5.4cm. STA caused the hip joint angle tracked with SM to be 1.9° more extended, 0.6° more adducted, and 5.8° more internally rotated than the hip tracked with DF. ROM was reduced for SM measurements relative to DF, with the largest difference of 21.8° about the internal-external axis during hip rotation. Constraining the model did not consistently reduce angle errors. Our results indicate STA causes substantial errors, particularly for markers tracking the femur and during hip internal-external rotation. This study establishes the need for future research to develop methods minimizing STA of markers on the thigh and pelvis.

摘要

反射性皮肤标记物与深层骨骼之间的软组织运动在步态分析中会引发误差。这些误差被称为软组织伪影(STA)。先前的研究尚未考察STA在动态活动期间如何影响髋关节角度和活动范围(ROM)。在此,我们:1)测量了步行、髋关节外展和髋关节旋转过程中骨盆和大腿上皮肤标记物的STA,2)量化了跟踪大腿、骨盆和髋关节角度/ROM时的误差,3)确定了对髋关节自由度的模型约束是否能减轻误差。11名无症状的年轻成年人同时使用反光皮肤标记物(SM)和双荧光透视(DF,一种具有亚毫米和亚度精度的X射线技术)进行成像。STA定义为DF测量的骨骼解剖框架中SM位置的范围,其因标记物位置、活动和受试者而异。综合所有皮肤标记物和活动来看,平均STA范围为0.3厘米至5.4厘米。与DF跟踪的髋关节相比,STA导致SM跟踪的髋关节角度伸展增加1.9°、内收增加0.6°、内旋增加5.8°。相对于DF测量,SM测量的ROM有所减小,在髋关节旋转期间,内外轴方向的最大差异为21.8°。对模型进行约束并不能始终减少角度误差。我们的结果表明,STA会导致显著误差,特别是对于跟踪股骨的标记物以及在髋关节内外旋转期间。本研究表明未来有必要开展研究以开发方法来最小化大腿和骨盆上标记物的STA。

相似文献

1
Soft tissue artifact causes significant errors in the calculation of joint angles and range of motion at the hip.
Gait Posture. 2017 Jun;55:184-190. doi: 10.1016/j.gaitpost.2017.03.033. Epub 2017 Mar 31.
2
In-vivo quantification of dynamic hip joint center errors and soft tissue artifact.
Gait Posture. 2016 Oct;50:246-251. doi: 10.1016/j.gaitpost.2016.09.011. Epub 2016 Sep 11.
3
Quantification of pelvic soft tissue artifact in multiple static positions.
Gait Posture. 2014 Feb;39(2):712-7. doi: 10.1016/j.gaitpost.2013.10.001. Epub 2013 Oct 11.
4
Soft tissue artifact causes underestimation of hip joint kinematics and kinetics in a rigid-body musculoskeletal model.
J Biomech. 2020 Jul 17;108:109890. doi: 10.1016/j.jbiomech.2020.109890. Epub 2020 Jun 13.
5
Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity.
J Biomech. 2010 May 7;43(7):1292-301. doi: 10.1016/j.jbiomech.2010.01.002. Epub 2010 Mar 4.
6
Effects of the soft tissue artefact on the hip joint kinematics during unrestricted activities of daily living.
J Biomech. 2020 May 7;104:109717. doi: 10.1016/j.jbiomech.2020.109717. Epub 2020 Feb 26.

引用本文的文献

2
The Reliability and Validity of an Instrumented Device for Tracking the Shoulder Range of Motion.
Sensors (Basel). 2025 Jun 18;25(12):3818. doi: 10.3390/s25123818.
5
Reliability and validity of a video-based markerless motion capture system in young healthy subjects.
Heliyon. 2025 Feb 12;11(4):e42597. doi: 10.1016/j.heliyon.2025.e42597. eCollection 2025 Feb 28.
6
Reliability of artificial intelligence-driven markerless motion capture in gait analyses of healthy adults.
PLoS One. 2025 Jan 22;20(1):e0316119. doi: 10.1371/journal.pone.0316119. eCollection 2025.

本文引用的文献

1
Soft tissue displacement over pelvic anatomical landmarks during 3-D hip movements.
J Biomech. 2017 Sep 6;62:14-20. doi: 10.1016/j.jbiomech.2017.01.013. Epub 2017 Jan 17.
2
In-vivo quantification of dynamic hip joint center errors and soft tissue artifact.
Gait Posture. 2016 Oct;50:246-251. doi: 10.1016/j.gaitpost.2016.09.011. Epub 2016 Sep 11.
3
How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.
J Biomech Eng. 2017 Apr 1;139(4). doi: 10.1115/1.4034708.
4
Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.
J Biomech. 2016 Jun 14;49(9):1658-1669. doi: 10.1016/j.jbiomech.2016.03.052. Epub 2016 Apr 1.
5
Proximal placement of lateral thigh skin markers reduces soft tissue artefact during normal gait using the Conventional Gait Model.
Comput Methods Biomech Biomed Engin. 2016 Nov;19(14):1497-504. doi: 10.1080/10255842.2016.1157865. Epub 2016 Mar 1.
7
The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility.
J Am Med Inform Assoc. 2015 Nov;22(6):1120-5. doi: 10.1093/jamia/ocv071. Epub 2015 Aug 13.
8
Soft tissue artifact distribution on lower limbs during treadmill gait: Influence of skin markers' location on cluster design.
J Biomech. 2015 Jul 16;48(10):1965-71. doi: 10.1016/j.jbiomech.2015.04.007. Epub 2015 Apr 17.
9
A soft tissue artefact model driven by proximal and distal joint kinematics.
J Biomech. 2014 Jul 18;47(10):2354-61. doi: 10.1016/j.jbiomech.2014.04.029. Epub 2014 Apr 26.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验