Krementsova Elena B, Furuta Ken'ya, Oiwa Kazuhiro, Trybus Kathleen M, Ali M Yusuf
From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and.
the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.
J Biol Chem. 2017 Jun 30;292(26):10998-11008. doi: 10.1074/jbc.M117.780791. Epub 2017 May 5.
Myosin Vc (myoVc) is unique among vertebrate class V myosin isoforms in that it requires teams of motors to move continuously on single actin filaments. Single molecules of myoVc cannot take multiple hand-over-hand steps from one actin-binding site to the next without dissociating, in stark contrast to the well studied myosin Va (myoVa) isoform. At low salt, single myoVc motors can, however, move processively on actin bundles, and at physiologic ionic strength, even teams of myoVc motors require actin bundles to sustain continuous motion. Here, we linked defined numbers of myoVc or myoVa molecules to DNA nanostructures as synthetic cargos. Using total internal reflectance fluorescence microscopy, we compared the stepping behavior of myoVc myoVa ensembles and myoVc stepping patterns on single actin filaments actin bundles. Run lengths of both myoVc and myoVa teams increased with motor number, but only multiple myoVc motors showed a run-length enhancement on actin bundles compared with actin filaments. By resolving the stepping behavior of individual myoVc motors with a quantum dot bound to the motor domain, we found that coupling of two myoVc motors significantly decreased the futile back and side steps that were frequently observed for single myoVc motors. Changes in the inter-motor distance between two coupled myoVc motors affected stepping dynamics, suggesting that mechanical tension coordinates the stepping behavior of two myoVc motors for efficient directional motion. Our study provides a molecular basis to explain how teams of myoVc motors are suited to transport cargos such as zymogen granules on actin bundles.
肌球蛋白Vc(myoVc)在脊椎动物V类肌球蛋白异构体中是独特的,因为它需要多个马达协同作用才能在单根肌动蛋白丝上持续移动。与经过充分研究的肌球蛋白Va(myoVa)异构体形成鲜明对比的是,单个myoVc分子在不解离的情况下无法从一个肌动蛋白结合位点到下一个位点进行多次交替式移动。然而,在低盐条件下,单个myoVc马达能够在肌动蛋白束上进行持续移动,并且在生理离子强度下,即使是多个myoVc马达也需要肌动蛋白束来维持持续运动。在这里,我们将特定数量的myoVc或myoVa分子连接到DNA纳米结构上作为合成货物。使用全内反射荧光显微镜,我们比较了myoVc、myoVa组合的移动行为以及myoVc在单根肌动蛋白丝和肌动蛋白束上的移动模式。myoVc和myoVa组合的运行长度都随着马达数量的增加而增加,但与肌动蛋白丝相比,只有多个myoVc马达在肌动蛋白束上表现出运行长度的增加。通过用与马达结构域结合的量子点解析单个myoVc马达的移动行为,我们发现两个myoVc马达的耦合显著减少了单个myoVc马达频繁出现的无效后退和侧步。两个耦合的myoVc马达之间的马达间距变化影响了移动动力学,这表明机械张力协调了两个myoVc马达的移动行为以实现高效的定向运动。我们的研究提供了一个分子基础来解释myoVc马达组合如何适合在肌动蛋白束上运输诸如酶原颗粒之类的货物。