Nelson Shane R, Trybus Kathleen M, Warshaw David M
Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, VT 05405.
Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, VT 05405
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E3986-95. doi: 10.1073/pnas.1406535111. Epub 2014 Sep 8.
Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors have used nonphysiological cargoes such as DNA linkers or glass beads, which do not reproduce one key aspect of vesicular systems--the fluid intermotor coupling of biological lipid membranes. Using a system of defined synthetic lipid vesicles (100- to 650-nm diameter) composed of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid at room temperature) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (gel at room temperature) with a range of surface densities of myosin Va motors (32-125 motors per μm(2)), we demonstrate that the velocity of vesicle transport by ensembles of myosin Va is sensitive to properties of the cargo. Gel-state DPPC vesicles bound with multiple motors travel at velocities equal to or less than vesicles with a single myosin Va (∼450 nm/s), whereas surprisingly, ensembles of myosin Va are able to transport fluid-state DOPC vesicles at velocities significantly faster (>700 nm/s) than a single motor. To explain these data, we developed a Monte Carlo simulation that suggests that these reductions in velocity can be attributed to two distinct mechanisms of intermotor interference (i.e., load-dependent modulation of stepping kinetics and binding-site exclusion), whereas faster transport velocities are consistent with a model wherein the normal stepping behavior of the myosin is supplemented by the preferential detachment of the trailing motor from the actin track.
肌球蛋白Va是一种基于肌动蛋白的分子马达,负责多种细胞内货物的运输和定位。尽管肌球蛋白Va马达在单分子水平上已得到充分表征,但生理运输是由马达集群进行的。探索分子马达集群行为的研究使用了非生理性货物,如DNA连接体或玻璃珠,这些货物无法重现囊泡系统的一个关键方面——生物脂质膜的流体马达间耦合。我们使用由1,2-二油酰基-sn-甘油-3-磷酸胆碱(DOPC)(室温下呈流体状态)或1,2-二棕榈酰基-sn-甘油-3-磷酸胆碱(DPPC)(室温下呈凝胶状态)组成的一系列定义明确的合成脂质囊泡(直径100至650纳米),其表面具有一系列密度的肌球蛋白Va马达(每平方微米32至125个马达),证明了肌球蛋白Va集群对囊泡运输的速度对货物特性敏感。与多个马达结合的凝胶态DPPC囊泡的移动速度等于或小于带有单个肌球蛋白Va的囊泡(约450纳米/秒),而令人惊讶的是,肌球蛋白Va集群能够以比单个马达显著更快(>700纳米/秒)的速度运输流体态DOPC囊泡。为了解释这些数据,我们开发了一个蒙特卡罗模拟,表明速度的降低可归因于两种不同的马达间干扰机制(即步移动力学的负载依赖性调节和结合位点排斥),而更快的运输速度与一个模型一致,在该模型中,肌球蛋白的正常步移行为通过尾随马达从肌动蛋白轨道上的优先脱离得到补充。