Suppr超能文献

经验性基因组进化模型为生命之树奠定了基础。

Empirical genome evolution models root the tree of life.

作者信息

Harish Ajith, Kurland Charles G

机构信息

Department of Cell and Molecular Biology, Structural and Molecular Biology Program, Uppsala University, Uppsala, Sweden.

Department of Biology, Microbial Ecology Program, Lund University, Lund, Sweden.

出版信息

Biochimie. 2017 Jul;138:137-155. doi: 10.1016/j.biochi.2017.04.014. Epub 2017 May 4.

Abstract

A reliable phylogenetic reconstruction of the evolutionary history of contemporary species depends on a robust identification of the universal common ancestor (UCA) at the root of the Tree of Life (ToL). That root polarizes the tree so that the evolutionary succession of ancestors to descendants is discernable. In effect, the root determines the branching order and the direction of character evolution. Typically, conventional phylogenetic analyses implement time-reversible models of evolution for which character evolution is un-polarized. Such practices leave the root and the direction of character evolution undefined by the data used to construct such trees. In such cases, rooting relies on theoretic assumptions and/or the use of external data to interpret unrooted trees. The most common rooting method, the outgroup method is clearly inapplicable to the ToL, which has no outgroup. Both here and in the accompanying paper (Harish and Kurland, 2017) we have explored the theoretical and technical issues related to several rooting methods. We demonstrate (1) that Genome-level characters and evolution models are necessary for species phylogeny reconstructions. By the same token, standard practices exploiting sequence-based methods that implement gene-scale substitution models do not root species trees; (2) Modeling evolution of complex genomic characters and processes that are non-reversible and non-stationary is required to reconstruct the polarized evolution of the ToL; (3) Rooting experiments and Bayesian model selection tests overwhelmingly support the earlier finding that akaryotes and eukaryotes are sister clades that descend independently from UCA (Harish and Kurland, 2013); (4) Consistent ancestral state reconstructions from independent genome samplings confirm the previous finding that UCA features three fourths of the unique protein domain-superfamilies encoded by extant genomes.

摘要

对当代物种进化史进行可靠的系统发育重建,依赖于对生命之树(ToL)根部的普遍共同祖先(UCA)进行有力识别。该根部使树极化,从而使祖先到后代的进化顺序清晰可辨。实际上,根部决定了分支顺序和性状进化的方向。通常,传统的系统发育分析采用时间可逆的进化模型,其中性状进化是无极化的。这些做法使得构建此类树所使用的数据无法确定根部和性状进化的方向。在这种情况下,确定根部依赖于理论假设和/或使用外部数据来解释无根树。最常见的确定根部的方法——外类群法显然不适用于生命之树,因为它没有外类群。在此处以及随附论文(Harish和Kurland,2017)中,我们探讨了与几种确定根部方法相关的理论和技术问题。我们证明:(1)基因组水平的性状和进化模型对于物种系统发育重建是必要的。同样,利用基于序列的方法并实施基因尺度替换模型的标准做法无法确定物种树的根部;(2)重建生命之树的极化进化需要对不可逆和非平稳的复杂基因组性状及过程进行建模;(3)确定根部的实验和贝叶斯模型选择测试压倒性地支持了早期的发现,即古核生物和真核生物是独立于UCA进化而来的姐妹分支(Harish和Kurland,2013);(4)从独立的基因组样本中进行一致的祖先状态重建,证实了先前的发现,即UCA具有现存基因组所编码的四分之三的独特蛋白质结构域超家族。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验