Suppr超能文献

结合功能连通性网络的中断和判别拓扑特性作为早期抽动秽语综合征儿童准确诊断的神经影像学生物标志物。

Combining Disrupted and Discriminative Topological Properties of Functional Connectivity Networks as Neuroimaging Biomarkers for Accurate Diagnosis of Early Tourette Syndrome Children.

机构信息

State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.

Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Mol Neurobiol. 2018 Apr;55(4):3251-3269. doi: 10.1007/s12035-017-0519-1. Epub 2017 May 6.

Abstract

Tourette syndrome (TS) is a childhood-onset neurological disorder. To date, accurate TS diagnosis remains challenging due to its varied clinical expressions and dependency on qualitative description of symptoms. Therefore, identifying accurate and objective neuroimaging biomarkers may help improve early TS diagnosis. As resting-state functional MRI (rs-fMRI) has been demonstrated as a promising neuroimaging tool for TS diagnosis, previous rs-fMRI studies on TS revealed functional connectivity (FC) changes in a few local brain networks or circuits. However, no study explored the disrupted topological organization of whole-brain FC networks in TS children. Meanwhile, very few studies have examined brain functional networks using machine-learning methods for diagnostics. In this study, we construct individual whole-brain, ROI-level FC networks for 29 drug-naive TS children and 37 healthy children. Then, we use graph theory analysis to investigate the topological disruptions between groups. The identified disrupted regions in FC networks not only involved the sensorimotor association regions but also the visual, default-mode and language areas, all highly related to TS. Furthermore, we propose a novel classification framework based on similarity network fusion (SNF) algorithm, to both diagnose an individual subject and explore the discriminative power of FC network topological properties in distinguishing between TS children and controls. We achieved a high accuracy of 88.79%, and the involved discriminative regions for classification were also highly related to TS. Together, both the disrupted topological properties between groups and the discriminative topological features for classification may be considered as comprehensive and helpful neuroimaging biomarkers for assisting the clinical TS diagnosis.

摘要

妥瑞氏症(TS)是一种儿童期发病的神经障碍疾病。迄今为止,由于其临床表现多样且依赖于症状的定性描述,因此准确的 TS 诊断仍然具有挑战性。因此,确定准确和客观的神经影像学生物标志物可能有助于改善早期 TS 诊断。由于静息态功能磁共振成像(rs-fMRI)已被证明是 TS 诊断的一种很有前途的神经影像学工具,因此先前针对 TS 的 rs-fMRI 研究揭示了少数局部脑网络或回路的功能连接(FC)变化。但是,没有研究探讨 TS 儿童中全脑 FC 网络的破坏拓扑组织。同时,使用机器学习方法进行诊断的脑功能网络研究很少。在这项研究中,我们为 29 名未接受药物治疗的 TS 儿童和 37 名健康儿童构建了个体全脑、ROI 水平的 FC 网络。然后,我们使用图论分析来研究组间的拓扑破坏。在 FC 网络中识别出的破坏区域不仅涉及感觉运动联合区域,还涉及视觉、默认模式和语言区域,所有这些区域都与 TS 高度相关。此外,我们提出了一种基于相似性网络融合(SNF)算法的新分类框架,不仅可以对个体进行诊断,还可以探索 FC 网络拓扑属性在区分 TS 儿童和对照组方面的判别能力。我们实现了 88.79%的高精度,而分类所涉及的判别区域也与 TS 高度相关。总之,组间破坏的拓扑性质和分类的判别拓扑特征都可以被认为是辅助临床 TS 诊断的综合且有用的神经影像学生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验