Suppr超能文献

房颤消融患者并发症预测风险模型。

Risk model for predicting complications in patients undergoing atrial fibrillation ablation.

机构信息

Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia.

Division of Cardiology, Rush University Medical Center, Chicago, Illinois.

出版信息

Heart Rhythm. 2017 Sep;14(9):1336-1343. doi: 10.1016/j.hrthm.2017.04.042. Epub 2017 May 4.

Abstract

BACKGROUND

Predictors of complications from atrial fibrillation (AF) ablation have been identified in small studies. The combination of risk factors to predict complications after ablation has not yet been explored.

OBJECTIVE

The purpose of this study was to develop a risk score model that predicts complications after AF ablation.

METHODS

The National Inpatient Sample database was used to identify 106,105 patients who underwent AF ablation. The study population was split into derivation cohort (DC; 2007-2010; n = 56,658) and validation cohort (VC; 2011-2013; n = 49,447). The multivariate predictors of any complication were identified in DC using regression analysis, and a risk score model was developed. The cohorts were divided into 5 groups (risk score in parentheses): group 0 (0), group 1 (1-10), group 2 (11-20), group 3 (21-30), and group 4 (31-61).

RESULTS

Patients in VC were older, likely to be white, female and had a higher prevalence of comorbidities. The overall complication rate (6.9% vs 8.3%; P < .0001) and inhospital mortality rate (0.3% vs 0.5%; P < .0001) were lower in VC than in DC. A multivariate analysis yielded 9 predictors for any complication (weightage points in parentheses): cerebrovascular accident (19), congestive heart failure (12), coagulopathy (11), renal failure (7), peripheral vascular disease (6), age ≥50 years (2), female sex (2), chronic obstructive lung disease (1), and nonwhite (1). In the overall cohort, the risk of complications in groups 0, 1, 2, 3, and 4 was 3.6%, 6.5%, 15.5%, 29.5%, and 45.7%, respectively, and inhospital mortality was 0%, 0.2%, 2%, 4.6%, and 6.1%, respectively. Similar trends were observed in DC and VC.

CONCLUSION

A practical risk score model can be used preoperatively to risk stratify patients undergoing AF ablation.

摘要

背景

已经在小型研究中确定了与心房颤动 (AF) 消融相关的并发症预测因素。但尚未探索将危险因素结合起来预测消融后并发症的方法。

目的

本研究旨在开发一种预测 AF 消融后并发症的风险评分模型。

方法

本研究使用国家住院患者样本数据库确定了 106,105 例接受 AF 消融的患者。将研究人群分为推导队列 (DC; 2007-2010 年; n = 56,658) 和验证队列 (VC; 2011-2013 年; n = 49,447)。使用回归分析在 DC 中确定任何并发症的多变量预测因素,并建立风险评分模型。将队列分为 5 组 (括号内为风险评分):组 0 (0)、组 1 (1-10)、组 2 (11-20)、组 3 (21-30) 和组 4 (31-61)。

结果

VC 中的患者年龄更大,更可能是白人、女性,且合并症的发病率更高。VC 中的总体并发症发生率 (6.9% 比 8.3%; P <.0001) 和住院死亡率 (0.3% 比 0.5%; P <.0001) 均低于 DC。多变量分析得出了 9 个与任何并发症相关的预测因素 (括号内为权重点):中风 (19)、充血性心力衰竭 (12)、凝血障碍 (11)、肾衰竭 (7)、外周血管疾病 (6)、年龄 ≥50 岁 (2)、女性 (2)、慢性阻塞性肺疾病 (1) 和非白人 (1)。在整个队列中,0、1、2、3 和 4 组的并发症风险分别为 3.6%、6.5%、15.5%、29.5%和 45.7%,住院死亡率分别为 0%、0.2%、2%、4.6%和 6.1%。DC 和 VC 中观察到类似的趋势。

结论

一种实用的风险评分模型可用于术前对接受 AF 消融的患者进行风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验