Suppr超能文献

基于机器学习的房颤射频消融术操作并发症风险模型。

Machine learning-based risk models for procedural complications of radiofrequency ablation for atrial fibrillation.

机构信息

Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.

Yidu Cloud Technology Inc, Beijing, China.

出版信息

BMC Med Inform Decis Mak. 2023 Nov 10;23(1):257. doi: 10.1186/s12911-023-02347-5.

Abstract

BACKGROUND

Radiofrequency ablation (RFA) for atrial fibrillation (AF) is associated with a risk of complications. This study aimed to develop and validate risk models for predicting complications after radiofrequency ablation of atrial fibrillation patients.

METHODS

This retrospective cohort study included 3365 procedures on 3187 patients with atrial fibrillation at a single medical center from 2018 to 2021. The outcome was the occurrence of postoperative procedural complications during hospitalization. Logistic regression, decision tree, random forest, gradient boosting machine, and extreme gradient boosting were used to develop risk models for any postoperative complications, cardiac effusion/tamponade, and hemorrhage, respectively. Patients' demographic characteristics, medical history, signs, symptoms at presentation, electrocardiographic features, procedural characteristics, laboratory values, and postoperative complications were collected from the medical record. The prediction results were evaluated by performance metrics (i.e., the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, F score, and Brier score) with repeated fivefold cross-validation.

RESULTS

Of the 3365 RFA procedures, there were 62 procedural complications with a rate of 1.84% in the entire cohort. The most common complications were cardiac effusion/tamponade (28 cases, 0.83%), and hemorrhage (21 cases, 0.80%). There was no procedure-related mortality. The machine learning algorithms of random forest (RF) outperformed other models for any complication (AUC 0.721 vs 0.627 to 0.707), and hemorrhage (AUC 0.839 vs 0.649 to 0.794). The extreme gradient boosting (XGBoost) model outperformed other models for cardiac effusion/tamponade (AUC 0.696 vs 0.606 to 0.662).

CONCLUSIONS

The developed risk models using machine learning algorithms showed good performance in predicting complications after RFA of AF patients. These models help identify patients at high risk of complications and guiding clinical decision-making.

摘要

背景

射频消融(RFA)治疗心房颤动(AF)与并发症风险相关。本研究旨在开发和验证预测心房颤动患者射频消融术后并发症的风险模型。

方法

这是一项回顾性队列研究,纳入了 2018 年至 2021 年在单一医疗中心接受射频消融术的 3187 例患者的 3365 例手术。术后并发症的发生作为住院期间的主要结局。分别使用逻辑回归、决策树、随机森林、梯度提升机和极端梯度提升机开发术后任何并发症、心脏压塞/填塞和出血的风险模型。从病历中收集患者的人口统计学特征、病史、就诊时的体征和症状、心电图特征、手术特征、实验室值和术后并发症。使用重复五次交叉验证评估预测结果的性能指标(即接受者操作特征曲线下面积(AUC)、准确性、敏感性、特异性、F 分数和 Brier 分数)。

结果

在 3365 例 RFA 手术中,共有 62 例出现手术并发症,整个队列的发生率为 1.84%。最常见的并发症是心脏压塞/填塞(28 例,0.83%)和出血(21 例,0.80%)。无手术相关死亡。随机森林(RF)机器学习算法在预测任何并发症(AUC 0.721 比 0.627 至 0.707)和出血(AUC 0.839 比 0.649 至 0.794)方面优于其他模型。极端梯度提升(XGBoost)模型在预测心脏压塞/填塞方面优于其他模型(AUC 0.696 比 0.606 至 0.662)。

结论

使用机器学习算法开发的风险模型在预测心房颤动患者射频消融术后并发症方面表现出良好的性能。这些模型有助于识别并发症风险较高的患者,并指导临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ee8/10636945/c61579b32202/12911_2023_2347_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验