Sorbonne Universités , UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
EDF R&D, 77818 Moret Sur Loing, Cedex, France.
Langmuir. 2017 Sep 19;33(37):9288-9297. doi: 10.1021/acs.langmuir.7b00675. Epub 2017 May 17.
Aqueous lithium-air batteries have very high theoretical energy densities, which potentially makes this technology very interesting for energy storage in electric mobility applications. However, the aqueous electrolyte requires the use of a watertight layer to protect the lithium metal, typically a thick NASICON glass-ceramic layer, which adds ohmic resistance and penalizes performance. This article deals with the replacement of this ceramic electrolyte by a hybrid organic-inorganic membrane. This new membrane combines an ionically conducting inorganic phase for Li ion transport (LiAlTi(PO) (LATP) and a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer for water tightness and mechanical properties. The Li ion transport through the membrane is ensured by an interconnected 3-D network of crystalline LATP fibers obtained by coupling an electrospinning process with the sol-gel synthesis followed by thermal treatment. After an impregnation step with PVDF-HFP, hybrid membranes with different volumetric fractions of PVDF-HFP were synthesized. These membranes are watertight and have Li ion conductivities ranging from 10 to 10 mS/cm. The conductivity depends on the PVDF-HFP volume fraction and the fibers' alignment in the membrane thickness, which in turn can be tuned by adjusting the water content in the electrospinning chamber during the process. The alignment of fibers parallel to the membrane surface is conductive to poor conductivity values whereas a disordered fiber mat leads to interesting conductivity values (1 × 10 mS/cm) at ambient temperature.
水系锂空电池具有非常高的理论能量密度,这使得这项技术在电动出行应用的储能方面非常有前景。然而,水系电解质需要使用防水层来保护金属锂,通常使用厚的 NASICON 玻璃陶瓷层,但这会增加欧姆电阻并降低性能。本文研究用混合有机-无机膜替代这种陶瓷电解质。这种新的膜结合了离子导电的无机相用于锂离子传输(LiAlTi(PO) (LATP))和聚偏二氟乙烯-共-六氟丙烯(PVDF-HFP)聚合物用于防水和机械性能。通过电纺丝工艺与溶胶-凝胶合成相结合,并随后进行热处理,得到具有互穿 3D 网络结构的 LATP 纤维,从而实现锂离子在膜中的传输。经过 PVDF-HFP 的浸渍步骤,合成了不同 PVDF-HFP 体积分数的混合膜。这些膜是防水的,锂离子电导率在 10 到 10 mS/cm 之间。电导率取决于 PVDF-HFP 的体积分数以及纤维在膜厚度中的排列方式,这可以通过在电纺过程中调整纺丝室内的含水量来进行调整。纤维平行于膜表面排列的方式会导致较差的导电性能,而无序的纤维毡则会在常温下产生有趣的导电性能(1×10 mS/cm)。