Environmental Chemistry and Technology Program, University of Wisconsin-Madison , 1525 Observatory Drive, Madison, Wisconsin 53706, United States.
Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.
ACS Nano. 2017 Jun 27;11(6):5489-5499. doi: 10.1021/acsnano.7b00231. Epub 2017 May 22.
Interactions of functionalized nanomaterials with biological membranes are expected to be governed by not only nanoparticle physiochemical properties but also coatings or "coronas" of biomacromolecules acquired after immersion in biological fluids. Here we prepared a library of 4-5 nm gold nanoparticles (AuNPs) coated with either ω-functionalized thiols or polyelectrolyte wrappings to examine the influence of surface functional groups on the assemblage of proteins complexing the nanoparticles and its subsequent impact on attachment to model biological membranes. We find that the initial nanoparticle surface coating has a cascading effect on interactions with model cell membranes by determining the assemblage of complexing proteins, which in turn influences subsequent interaction with model biological membranes. Each type of functionalized AuNP investigated formed complexes with a unique ensemble of serum proteins that depended on the initial surface coating of the nanoparticles. Formation of protein-nanoparticle complexes altered the electrokinetic, hydrodynamic, and plasmonic properties of the AuNPs. Complexation of the nanoparticles with proteins reduced the attachment of cationic AuNPs and promoted attachment of anionic AuNPs to supported lipid bilayers; this trend is observed with both lipid bilayers comprising 100% zwitterionic phospholipids and those incorporating anionic phosphatidylinositol. Complexation with serum proteins led to attachment of otherwise noninteracting oligo(ethylene glycol)-functionalized AuNPs to bilayers containing phosphatidylinositol. These results demonstrate the importance of considering both facets of the nano-bio interface: functional groups displayed on the nanoparticle surface and proteins complexing the nanoparticles influence interaction with biological membranes as does the molecular makeup of the membranes themselves.
功能化纳米材料与生物膜的相互作用不仅受纳米颗粒物理化学性质的影响,还受浸入生物流体后获得的生物大分子涂层或“冠”的影响。在这里,我们制备了一系列表面覆盖 ω-功能化硫醇或聚电解质的 4-5nm 金纳米颗粒(AuNPs),以研究表面官能团对与纳米颗粒结合的蛋白质组装的影响及其对与模型生物膜附着的后续影响。我们发现,初始纳米颗粒表面涂层通过决定结合蛋白的组装,对与模型细胞膜的相互作用产生级联效应,进而影响与模型生物膜的后续相互作用。所研究的每种功能化 AuNP 都与一组独特的血清蛋白形成复合物,这取决于纳米颗粒的初始表面涂层。蛋白质-纳米颗粒复合物的形成改变了 AuNPs 的电动、流体动力学和等离子体特性。与蛋白质的复合物化减少了阳离子 AuNPs 的附着,并促进了阴离子 AuNPs 与支持的脂质双层的附着;这种趋势在包含 100%两性离子磷脂的脂质双层和包含阴离子磷脂酰肌醇的脂质双层中都观察到。与血清蛋白的复合物化导致原本不相互作用的聚(乙二醇)功能化 AuNPs 附着到含有磷脂酰肌醇的双层上。这些结果表明,考虑纳米生物界面的两个方面都很重要:纳米颗粒表面显示的官能团和与纳米颗粒结合的蛋白质都会影响与生物膜的相互作用,而膜本身的分子组成也会影响。