Suppr超能文献

单细胞和多细胞基因之间相互作用的改变导致了多种实体瘤转化特征的发生。

Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors.

机构信息

Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.

Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.

出版信息

Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6406-6411. doi: 10.1073/pnas.1617743114. Epub 2017 May 8.

Abstract

Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer.

摘要

不同组织起源和遗传构成的肿瘤表现出共同的标志性细胞表型,包括持续增殖、抑制细胞死亡和代谢改变。这些表型的共性被认为源于调控机制的破坏,这些调控机制是在向多细胞生物进化过程中演变而来的,用于控制基本的细胞过程,如生长和复制。通过系统发生发生学对人类基因的进化起源进行时间测定,在七个实体瘤的癌症基因组图谱 RNA 测序数据中发现基因年龄与表达水平之间存在密切关联。与单细胞生物保守的基因被强烈上调,而多细胞生物起源的基因主要被失活。对于已知在癌症中重要的过程,这些模式最为一致,这表明在恶性转化过程中既有选择又有积极的调控。在肿瘤中,强烈相互作用的多细胞和单细胞过程的协调表达丢失了。这种单细胞和多细胞功能的分离似乎是由 12 个高度连接的基因介导的,这标志着它们是肿瘤发生的重要一般驱动因素。我们的研究结果表明,在一系列实体瘤中,与基因进化历史密切相关的共同原则是导致细胞过程水平趋同变化的基础。我们提出,人类基因调控网络中多细胞和单细胞区域之间的基因活性改变激活原始转录程序,驱动癌症的共同标志性特征。因此,操纵不同进化起源的生物过程之间的串扰可能为癌症提供强大且广泛适用的治疗策略。

相似文献

1
Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6406-6411. doi: 10.1073/pnas.1617743114. Epub 2017 May 8.
3
How the evolution of multicellularity set the stage for cancer.
Br J Cancer. 2018 Jan;118(2):145-152. doi: 10.1038/bjc.2017.398. Epub 2018 Jan 16.
5
Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
Semin Cancer Biol. 2015 Feb;30:4-12. doi: 10.1016/j.semcancer.2014.04.002. Epub 2014 Apr 18.
6
Reverting to single-cell biology: The predictions of the atavism theory of cancer.
Prog Biophys Mol Biol. 2021 Oct;165:49-55. doi: 10.1016/j.pbiomolbio.2021.08.002. Epub 2021 Aug 8.
10
Bioinformatic approaches to the investigation of the atavistic genes implicated in cancer.
Front Biosci (Landmark Ed). 2021 Aug 30;26(8):279-311. doi: 10.52586/4944.

引用本文的文献

1
Evolutionary Transcriptomics of Cancer Development.
Int J Mol Sci. 2025 May 23;26(11):5041. doi: 10.3390/ijms26115041.
4
Functional innovation through new genes as a general evolutionary process.
Nat Genet. 2025 Feb;57(2):295-309. doi: 10.1038/s41588-024-02059-0. Epub 2025 Jan 28.
5
The systemic evolutionary theory of the origin of cancer (SETOC): an update.
Mol Med. 2025 Jan 14;31(1):12. doi: 10.1186/s10020-025-01069-w.
6
The evolutionary cancer genome theory and its reasoning.
Genet Med Open. 2023 Apr 23;1(1):100809. doi: 10.1016/j.gimo.2023.100809. eCollection 2023.
7
The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers.
Int J Mol Sci. 2024 Aug 23;25(17):9163. doi: 10.3390/ijms25179163.
9
Is Cancer Metabolism an Atavism?
Cancers (Basel). 2024 Jun 29;16(13):2415. doi: 10.3390/cancers16132415.

本文引用的文献

1
Pan-cancer analysis of the extent and consequences of intratumor heterogeneity.
Nat Med. 2016 Jan;22(1):105-13. doi: 10.1038/nm.3984. Epub 2015 Nov 30.
2
Combination Therapy Targeting Ribosome Biogenesis and mRNA Translation Synergistically Extends Survival in MYC-Driven Lymphoma.
Cancer Discov. 2016 Jan;6(1):59-70. doi: 10.1158/2159-8290.CD-14-0673. Epub 2015 Oct 21.
3
The Convergent Cancer Evolution toward a Single Cellular Destination.
Mol Biol Evol. 2016 Jan;33(1):4-12. doi: 10.1093/molbev/msv212. Epub 2015 Oct 13.
4
Ancient hot and cold genes and chemotherapy resistance emergence.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10467-72. doi: 10.1073/pnas.1512396112. Epub 2015 Aug 3.
5
Evolutionary determinants of cancer.
Cancer Discov. 2015 Aug;5(8):806-20. doi: 10.1158/2159-8290.CD-15-0439. Epub 2015 Jul 20.
6
Cancer across the tree of life: cooperation and cheating in multicellularity.
Philos Trans R Soc Lond B Biol Sci. 2015 Jul 19;370(1673). doi: 10.1098/rstb.2014.0219.
7
8
Gene Ontology Consortium: going forward.
Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56. doi: 10.1093/nar/gku1179. Epub 2014 Nov 26.
9
Phylostratigraphic bias creates spurious patterns of genome evolution.
Mol Biol Evol. 2015 Jan;32(1):258-67. doi: 10.1093/molbev/msu286. Epub 2014 Oct 13.
10
Targeting cancer's weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model.
Bioessays. 2014 Sep;36(9):827-35. doi: 10.1002/bies.201400070. Epub 2014 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验