Sune A, Bienvenue A
Laboratoire de Biologie Physico-chimique (UA CNRS 530), Montpellier, France.
Biochemistry. 1988 Sep 6;27(18):6794-800. doi: 10.1021/bi00418a022.
ESR spectroscopy was used to investigate the distribution of spin-labeled analogues of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in the presence of human platelets. Three rates were determined: hydrolysis of the ester bond at position 2, reduction of labels by cytoplasm, and internalization of labels situated in the outer leaflet of the plasma membrane. We found that the half-time for transverse diffusion of added phospholipids was shorter for aminophospholipids (40 min and less than 10 min for PE and PS, respectively) than for the choline derivatives (greater than 120 min for PC, not measurable for SM). Addition of any of the phospholipids led to a considerable change in the initial platelet shape (assessed by electron microscopy) from a discoid form to a smaller body with very long pseudopods. When aminophospholipids were used, the platelets quickly returned to the initial shape [half-time of 20 min and less than 5 min for (0.2)PE and (0.2)PS, respectively]. Conversely, there was no relaxation after (0.2)PC or (0.2)SM was added. We conclude that there is a relationship between the excess of phospholipids in the outer leaflet of the plasma membrane and cytoskeletal organization presumably via actin polymerization, which is responsible for platelet shape.