Suppr超能文献

三维多孔硅和 SiO 原位修饰碳纳米管作为锂离子电池的阳极材料。

Three-Dimensional Porous Si and SiO with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries.

机构信息

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , Shanghai 200438, China.

出版信息

ACS Appl Mater Interfaces. 2017 May 31;9(21):17807-17813. doi: 10.1021/acsami.6b16644. Epub 2017 May 16.

Abstract

A high-capacity Si anode is always accompanied by very large volume expansion and structural collapse during the lithium-ion insertion/extraction process. To stabilize the structure of the Si anode, magnesium vapor thermal reduction has been used to synthesize porous Si and SiO (pSS) particles, followed by in situ growth of carbon nanotubes (CNTs) in pSS pores through a chemical vapor deposition (CVD) process. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy have shown that the final product (pSS/CNTs) possesses adequate void space intertwined by uniformly distributed CNTs and inactive silica in particle form. pSS/CNTs with such an elaborate structural design deliver improved electrochemical performance, with better coulombic efficiency (70% at the first cycle), cycling capability (1200 mAh g at 0.5 A g after 200 cycles), and rate capability (1984, 1654, 1385, 1072, and 800 mAh g at current densities of 0.1, 0.2, 0.5, 1, and 2 A g, respectively), compared to pSS and porous Si/CNTs. These merits of pSS/CNTs are attributed to the capability of void space to absorb the volume changes and that of the silica to confine the excessive lithiation expansion of the Si anode. In addition, CNTs have interwound the particles, leading to significant enhancement of electronic conductivity before and after Si-anode pulverization. This simple and scalable strategy makes it easy to expand the application to manufacturing other alloy anode materials.

摘要

高容量硅阳极在锂离子的嵌入/脱出过程中总是伴随着非常大的体积膨胀和结构坍塌。为了稳定硅阳极的结构,采用镁蒸汽热还原法合成多孔硅和氧化硅(pSS)颗粒,然后通过化学气相沉积(CVD)过程在 pSS 孔内原位生长碳纳米管(CNTs)。场发射扫描电子显微镜和高分辨率透射电子显微镜表明,最终产物(pSS/CNTs)具有充足的由均匀分布的 CNT 和颗粒状的惰性二氧化硅交织而成的空隙空间。具有如此精细结构设计的 pSS/CNTs 具有改进的电化学性能,具有更好的库仑效率(第一圈为 70%)、循环能力(200 圈后在 0.5 A g 时为 1200 mAh g)和倍率性能(在 0.1、0.2、0.5、1 和 2 A g 的电流密度下分别为 1984、1654、1385、1072 和 800 mAh g),与 pSS 和多孔硅/CNTs 相比。pSS/CNTs 的这些优点归因于空隙空间吸收体积变化的能力和二氧化硅限制硅阳极过度锂化膨胀的能力。此外,CNTs 交织在颗粒之间,在硅阳极粉碎前后显著提高了电子导电性。这种简单且可扩展的策略使得很容易将其应用扩展到制造其他合金阳极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验