Suppr超能文献

硅纳米颗粒在碳纳米管中的锂化。

Lithiation of silicon nanoparticles confined in carbon nanotubes.

机构信息

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.

出版信息

ACS Nano. 2015 May 26;9(5):5063-71. doi: 10.1021/acsnano.5b00157. Epub 2015 Apr 20.

Abstract

Silicon has the highest theoretical lithium storage capacity of all materials at 4200 mAh/g; therefore, it is considered to be a promising candidate as the anode of high-energy-density lithium-ion batteries (LIBs). However, serious volume changes caused by lithium insertion/deinsertion lead to a rapid decay of the performance of the Si anode. Here, a Si nanoparticle (NP)-filled carbon nanotube (CNT) material was prepared by chemical vapor deposition, and a nanobattery was constructed inside a transmission electron microscope (TEM) using the Si NP-filled CNT as working electrode to directly investigate the structural change of the Si NPs and the confinement effect of the CNT during the lithiation and delithiation processes. It is found that the volume expansion (∼180%) of the lithiated Si NPs is restricted by the wall of the CNTs and that the CNT can accommodate this volume expansion without breaking its tubular structure. The Si NP-filled CNTs showed a high reversible lithium storage capacity and desirable high rate capability, because the pulverization and exfoliation of the Si NPs confined in CNTs were efficiently prevented. Our results demonstrate that filling CNTs with high-capacity active materials is a feasible way to make high-performance LIB electrode materials, taking advantage of the unique confinement effect and good electrical conductivity of the CNTs.

摘要

硅具有 4200mAh/g 的最高理论比锂存储容量,因此被认为是高能密度锂离子电池(LIB)的阳极的有前途的候选材料。然而,锂的插入/脱插引起的严重体积变化导致 Si 阳极的性能迅速衰减。在此,通过化学气相沉积制备了一种 Si 纳米颗粒(NP)填充碳纳米管(CNT)材料,并在透射电子显微镜(TEM)中使用 Si NP 填充 CNT 作为工作电极构建了一个纳米电池,以直接研究 Si NPs 的结构变化和在锂化和脱锂过程中 CNT 的限制作用。结果发现,锂化 Si NPs 的体积膨胀(约 180%)受到 CNT 壁的限制,并且 CNT 可以在不破坏其管状结构的情况下容纳这种体积膨胀。Si NP 填充 CNT 表现出高可逆的锂存储容量和理想的高倍率性能,因为有效地防止了限制在 CNT 中的 Si NPs 的粉碎和剥落。我们的结果表明,填充 CNT 高容量活性材料是制造高性能 LIB 电极材料的可行方法,利用 CNT 的独特限制作用和良好的导电性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验