Suppr超能文献

用于可推广安全性效应估计的因果推断框架。

Causal inference framework for generalizable safety effect estimates.

作者信息

Wood Jonathan S, Donnell Eric T

机构信息

Department of Civil and Environmental Engineering, South Dakota State University, Crothers Engineering Hall 132, Box 2219, Brookings, SD 57007, United States.

Department of Civil and Environmental Engineering, The Pennsylvania State University, 231 Sackett Building, University Park, PA 16802, United States.

出版信息

Accid Anal Prev. 2017 Jul;104:74-87. doi: 10.1016/j.aap.2017.05.001. Epub 2017 May 6.

Abstract

This study integrates a causal inference framework to the Empirical Bayes (EB) before-after method to develop generalizable safety effect estimates (i.e., crash modification factor (CMF)). The method considers approaches to estimate the average treatment effect for the treated (ATT), average treatment effect for the untreated (ATU), and average treatment effect (ATE). The current EB method is shown to estimate ATT while ATE is what is typically desired in traffic safety research. Modifications to the current EB method to estimate ATU and ATE are provided. The method is then applied to a dataset with a "no-treatment" scenario where the treatments were: 1) randomly selected and 2) selected based on crash history. Given the "no-treatment" outcome, it is known that the CMFs should have a value of 1 in order to be considered accurate. The standard negative binomial and mixed effects negative binomial regression models were applied in the analysis. It was found that, of the two regression methods, the ATE CMFs developed using the standard negative binomial were the most accurate. Finally, potential sources of bias in the EB method are discussed.

摘要

本研究将因果推断框架与经验贝叶斯(EB)前后法相结合,以得出可推广的安全效应估计值(即碰撞修正因子(CMF))。该方法考虑了估计治疗组平均治疗效应(ATT)、未治疗组平均治疗效应(ATU)和平均治疗效应(ATE)的方法。研究表明,当前的EB方法用于估计ATT,而交通安全研究通常需要的是ATE。本文提供了对当前EB方法的修正,以估计ATU和ATE。然后将该方法应用于一个具有“无治疗”情景的数据集,其中治疗方法为:1)随机选择;2)根据碰撞历史选择。鉴于“无治疗”结果,已知CMF值应为1才能被视为准确。分析中应用了标准负二项式回归模型和混合效应负二项式回归模型。结果发现,在这两种回归方法中,使用标准负二项式得出的ATE CMF最为准确。最后,讨论了EB方法中潜在的偏差来源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验