Suppr超能文献

基于力学的层析成像:初步可行性研究。

Mechanics Based Tomography: A Preliminary Feasibility Study.

作者信息

Mei Yue, Wang Sicheng, Shen Xin, Rabke Stephen, Goenezen Sevan

机构信息

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.

Department of Mathematics, Texas A&M University, College Station, TX 77843, USA.

出版信息

Sensors (Basel). 2017 May 9;17(5):1075. doi: 10.3390/s17051075.

Abstract

We present a non-destructive approach to sense inclusion objects embedded in a solid medium remotely from force sensors applied to the medium and boundary displacements that could be measured via a digital image correlation system using a set of cameras. We provide a rationale and strategy to uniquely identify the heterogeneous sample composition based on stiffness (here, shear modulus) maps. The feasibility of this inversion scheme is tested with simulated experiments that could have clinical relevance in diagnostic imaging (e.g., tumor detection) or could be applied to engineering materials. No assumptions are made on the shape or stiffness quantity of the inclusions. We observe that the novel inversion method using solely boundary displacements and force measurements performs well in recovering the heterogeneous material/tissue composition that consists of one and two stiff inclusions embedded in a softer background material. Furthermore, the target shear modulus value for the stiffer inclusion region is underestimated and the inclusion size is overestimated when incomplete boundary displacements on some part of the boundary are utilized. For displacements measured on the entire boundary, the shear modulus reconstruction improves significantly. Additionally, we observe that with increasing number of displacement data sets utilized in solving the inverse problem, the quality of the mapped shear moduli improves. We also analyze the sensitivity of the shear modulus maps on the noise level varied between 0.1% and 5% white Gaussian noise in the boundary displacements, force and corresponding displacement indentation. Finally, a sensitivity analysis of the recovered shear moduli to the depth, stiffness and the shape of the stiff inclusion is performed. We conclude that this approach has potential as a novel imaging modality and refer to it as Mechanics Based Tomography (MBT).

摘要

我们提出了一种非破坏性方法,可通过应用于固体介质的力传感器以及可通过使用一组相机的数字图像相关系统测量的边界位移,远程感知嵌入固体介质中的内含物。我们提供了一种基于刚度(此处为剪切模量)图唯一识别异质样品成分的基本原理和策略。通过模拟实验测试了这种反演方案的可行性,这些实验在诊断成像(例如肿瘤检测)中可能具有临床相关性,或者可应用于工程材料。对于内含物的形状或刚度数量不做任何假设。我们观察到,仅使用边界位移和力测量的新型反演方法在恢复由嵌入较软背景材料中的一个和两个刚性内含物组成的异质材料/组织成分方面表现良好。此外,当利用边界某些部分的不完整边界位移时,较硬内含物区域的目标剪切模量值被低估,内含物尺寸被高估。对于在整个边界上测量的位移,剪切模量重建有显著改善。此外,我们观察到,在解决反问题时使用的位移数据集数量增加,映射的剪切模量质量会提高。我们还分析了剪切模量图对边界位移、力和相应位移压痕中0.1%至5%白高斯噪声变化的噪声水平的敏感性。最后,对恢复的剪切模量对刚性内含物的深度、刚度和形状进行了敏感性分析。我们得出结论,这种方法作为一种新型成像模态具有潜力,并将其称为基于力学的层析成像(MBT)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05fe/5470465/d9e4fd44dc0a/sensors-17-01075-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验