Marchán Daniel F, Fernández Rosa, de Sosa Irene, Díaz Cosín Darío J, Novo Marta
Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain.
Centre for Genomic Regulation, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain.
Mol Phylogenet Evol. 2017 Jul;112:185-193. doi: 10.1016/j.ympev.2017.05.005. Epub 2017 May 6.
Spatial and temporal aspects of the evolution of cryptic species complexes have received less attention than species delimitation within them. The phylogeography of the cryptic complex Hormogaster elisae (Oligochaeta, Hormogastridae) lacks knowledge on several aspects, including the small-scale distribution of its lineages or the palaeogeographic context of their diversification. To shed light on these topics, a dense specimen collection was performed in the center of the Iberian Peninsula - resulting in 28 new H. elisae collecting points, some of them as close as 760m from each other- for a higher resolution of the distribution of the cryptic lineages and the relationships between the populations. Seven molecular regions were amplified: mitochondrial subunit 1 of cytochrome c oxidase (COI), 16S rRNA and tRNA Leu, Ala, and Ser (16S t-RNAs), one nuclear ribosomal gene (a fragment of 28S rRNA) and one nuclear protein-encoding gene (histone H3) in order to infer their phylogenetic relationships. Different representation methods of the pairwise divergence in the cytochrome oxidase I sequence (heatmap and genetic landscape graphs) were used to visualize the genetic structure of H. elisae. A nested approach sensu Mairal et al. (2015) (connecting the evolutionary rates of two datasets of different taxonomic coverage) was used to obtain one approximation to a time-calibrated phylogenetic tree based on external Clitellata fossils and a wide molecular dataset. Our results indicate that limited active dispersal ability and ecological or biotic barriers could explain the isolation of the different cryptic lineages, which never co-occur. Rare events of long distance dispersal through hydrochory appear as one of the possible causes of range expansion.
隐秘物种复合体进化的时空方面所受到的关注少于其中的物种界定。隐秘复合体埃氏霍莫胃蚓(环节动物门,霍莫胃蚓科)的系统地理学在几个方面尚缺乏了解,包括其谱系的小尺度分布或其多样化的古地理背景。为了阐明这些问题,我们在伊比利亚半岛中部进行了密集的标本采集——得到了28个新的埃氏霍莫胃蚓采集点,其中一些采集点彼此相距仅760米——以便更精确地解析隐秘谱系的分布以及种群之间的关系。我们扩增了七个分子区域:细胞色素c氧化酶亚基1(COI)、16S核糖体RNA以及tRNA亮氨酸、丙氨酸和丝氨酸(16S t - RNAs)的线粒体基因,一个核糖体核基因(28S rRNA的一个片段)和一个核蛋白编码基因(组蛋白H3),以推断它们的系统发育关系。我们使用了细胞色素氧化酶I序列中两两差异的不同表示方法(热图和遗传景观图)来可视化埃氏霍莫胃蚓的遗传结构。我们采用了Mairal等人(2015年)提出的嵌套方法(连接两个不同分类覆盖范围数据集的进化速率),基于外部寡毛纲化石和广泛的分子数据集,得到了一个时间校准系统发育树的近似值。我们的结果表明,有限的主动扩散能力以及生态或生物屏障可以解释不同隐秘谱系的隔离,这些谱系从未同时出现过。通过水媒传播的远距离扩散罕见事件似乎是范围扩张的可能原因之一。