Suppr超能文献

胶束复合物的微流控混合对体外/体内基因沉默和细胞内转运动力学的影响。

The impact of microfluidic mixing of triblock micelleplexes on in vitro / in vivo gene silencing and intracellular trafficking.

机构信息

Department of Oncology, Wayne State University School of Medicine, 4100 John R St, Detroit, MI 48201, United States of America.

出版信息

Nanotechnology. 2017 Jun 2;28(22):224001. doi: 10.1088/1361-6528/aa6d15. Epub 2017 May 10.

Abstract

The triblock copolymer polyethylenimine-polycaprolactone-polyethylene glycol (PEI-PCL-PEG) has been shown to spontaneously assemble into nano-sized particulate carriers capable of complexing with nucleic acids for gene delivery. The objective of this study was to investigate micelleplex characteristics, their in vitro and in vivo fate following microfluidic preparation of siRNA nanoparticles compared to the routinely used batch reactor mixing technique. Herein, PEI-PCL-PEG nanoparticles were prepared with batch reactor or microfluidic mixing techniques and characterized by various biochemical assays and in cell culture. Microfluidic nanoparticles showed a reduction of overall particle size as well as a more uniform size distribution when compared to batch reactor pipette mixing. Confocal microscopy, flow cytometry and qRT-PCR displayed the subcellular delivery of the microfluidic formulation and confirmed the ability to achieve mRNA knockdown. Intratracheal instillation of microfluidic formulation resulted in a significantly more efficient (p < 0.05) knockdown of GAPDH compared to treatment with the batch reactor formulation. The use of microfluidic mixing techniques yields an overall smaller and more uniform PEG-PCL-PEI nanoparticle that is able to more efficiently deliver siRNA in vivo. This preparation method may prove to be useful when a scaled up production of well-defined polyplexes is required.

摘要

三嵌段共聚物聚乙烯亚胺-聚己内酯-聚乙二醇(PEI-PCL-PEG)已被证明能够自发组装成纳米级颗粒载体,能够与核酸复合用于基因传递。本研究的目的是研究胶束复合物的特性,以及与常规使用的批量反应器混合技术相比,微流控制备 siRNA 纳米颗粒后的体外和体内命运。在此,使用批量反应器或微流控混合技术制备了 PEI-PCL-PEG 纳米颗粒,并通过各种生化分析和细胞培养进行了表征。与批量反应器移液器混合相比,微流控纳米颗粒的总体粒径减小,粒径分布更加均匀。共聚焦显微镜、流式细胞术和 qRT-PCR 显示了微流控制剂的亚细胞递送,并证实了实现 mRNA 敲低的能力。与使用批量反应器制剂相比,气管内滴注微流控制剂可显著更有效地(p<0.05)敲低 GAPDH。使用微流控混合技术可得到总体上更小且更均匀的 PEG-PCL-PEI 纳米颗粒,能够更有效地在体内递送 siRNA。当需要规模化生产具有明确特征的聚电解质复合物时,这种制备方法可能会很有用。

相似文献

1
The impact of microfluidic mixing of triblock micelleplexes on in vitro / in vivo gene silencing and intracellular trafficking.
Nanotechnology. 2017 Jun 2;28(22):224001. doi: 10.1088/1361-6528/aa6d15. Epub 2017 May 10.
3
4
Lyophilised ready-to-use formulations of PEG-PCL-PEI nano-carriers for siRNA delivery.
Int J Pharm. 2012 May 30;428(1-2):121-4. doi: 10.1016/j.ijpharm.2012.03.003. Epub 2012 Mar 10.
5
Microfluidic-Based Holonomic Constraints of siRNA in the Kernel of Lipid/Polymer Hybrid Nanoassemblies for Improving Stable and Safe In Vivo Delivery.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):14839-14854. doi: 10.1021/acsami.9b22781. Epub 2020 Mar 20.
7
Optimising the self-assembly of siRNA loaded PEG-PCL-lPEI nano-carriers employing different preparation techniques.
J Control Release. 2012 Jun 28;160(3):583-91. doi: 10.1016/j.jconrel.2012.04.013. Epub 2012 Apr 13.

引用本文的文献

2
Polymeric-Micelle-Based Delivery Systems for Nucleic Acids.
Pharmaceutics. 2023 Jul 26;15(8):2021. doi: 10.3390/pharmaceutics15082021.
3
Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape.
J Control Release. 2023 Jan;353:518-534. doi: 10.1016/j.jconrel.2022.12.008. Epub 2022 Dec 9.
4
Can pulmonary RNA delivery improve our pandemic preparedness?
J Control Release. 2022 May;345:549-556. doi: 10.1016/j.jconrel.2022.03.039. Epub 2022 Mar 28.
6
siRNA Therapeutics against Respiratory Viral Infections-What Have We Learned for Potential COVID-19 Therapies?
Adv Healthc Mater. 2021 Apr;10(7):e2001650. doi: 10.1002/adhm.202001650. Epub 2021 Jan 27.
7
Characterization of positively charged polyplexes by tunable resistive pulse sensing.
Eur J Pharm Biopharm. 2021 Jan;158:359-364. doi: 10.1016/j.ejpb.2020.12.010. Epub 2020 Dec 15.
8
Inhaled RNA Therapy: From Promise to Reality.
Trends Pharmacol Sci. 2020 Oct;41(10):715-729. doi: 10.1016/j.tips.2020.08.002. Epub 2020 Sep 4.
9
Nanoparticle-Mediated Gene Silencing for Sensitization of Lung Cancer to Cisplatin Therapy.
Molecules. 2020 Apr 24;25(8):1994. doi: 10.3390/molecules25081994.
10
Polymeric Nanoparticles Based on Tyrosine-Modified, Low Molecular Weight Polyethylenimines for siRNA Delivery.
Pharmaceutics. 2019 Nov 12;11(11):600. doi: 10.3390/pharmaceutics11110600.

本文引用的文献

1
Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma.
J Control Release. 2016 May 10;229:120-129. doi: 10.1016/j.jconrel.2016.03.029. Epub 2016 Mar 19.
2
4
Principles of nanoparticle design for overcoming biological barriers to drug delivery.
Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330.
6
The advantages of pulmonary delivery of therapeutic siRNA.
Ther Deliv. 2015;6(4):407-9. doi: 10.4155/tde.15.8.
7
Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery.
Mol Pharm. 2015 Feb 2;12(2):362-74. doi: 10.1021/mp5004724. Epub 2014 Dec 5.
8
Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium.
ACS Nano. 2014 Nov 25;8(11):11778-89. doi: 10.1021/nn505399e. Epub 2014 Nov 4.
9
Recent advances in curcumin nanoformulation for cancer therapy.
Expert Opin Drug Deliv. 2014 Aug;11(8):1183-201. doi: 10.1517/17425247.2014.916686. Epub 2014 May 24.
10
Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes.
Biomaterials. 2014 Aug;35(24):6369-78. doi: 10.1016/j.biomaterials.2014.04.095. Epub 2014 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验