Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
KIT-TUD-Joint Research Laboratory Nanomaterials, Technical University Darmstadt, Jovanka-Bontschits-Strasse 2, 64287 Darmstadt, Germany.
Nat Commun. 2017 May 10;8:15339. doi: 10.1038/ncomms15339.
Electric field tuning of magnetism is one of the most intensely pursued research topics of recent times aiming at the development of new-generation low-power spintronics and microelectronics. However, a reversible magnetoelectric effect with an on/off ratio suitable for easy and precise device operation is yet to be achieved. Here we propose a novel route to robustly tune magnetism via the charging/discharging processes of hybrid supercapacitors, which involve electrostatic (electric-double-layer capacitance) and electrochemical (pseudocapacitance) doping. We use both charging mechanisms-occurring at the LaSrMnO/ionic liquid interface to control the balance between ferromagnetic and non-ferromagnetic phases of LaSrMnO to an unprecedented extent. A magnetic modulation of up to ≈33% is reached above room temperature when applying an external potential of only about 2.0 V. Our case study intends to draw attention to new, reversible physico-chemical phenomena in the rather unexplored area of magnetoelectric supercapacitors.
电场调控磁性是当前最热门的研究课题之一,旨在开发新一代低功耗的自旋电子学和微电子学。然而,具有适合于简便、精确器件操作的通断比的可逆变磁电效应尚未实现。在这里,我们提出了一种通过混合超级电容器的充/放电过程来稳健地调控磁性的新途径,该过程涉及静电(双电层电容)和电化学(赝电容)掺杂。我们利用两种充电机制——在 LaSrMnO/离子液体界面处发生的充电机制,来控制 LaSrMnO 的铁磁相与非铁磁相之间的平衡,这在以前是前所未有的。当仅施加约 2.0 V 的外部电势时,在室温以上可以达到高达约 33%的磁调制。我们的案例研究旨在引起人们对磁电超级电容器这一相当未被探索的领域中新型、可逆物理化学现象的关注。