Suppr超能文献

一种基于感知的监督降维方法用于可视化。

A Perception-Driven Approach to Supervised Dimensionality Reduction for Visualization.

出版信息

IEEE Trans Vis Comput Graph. 2018 May;24(5):1828-1840. doi: 10.1109/TVCG.2017.2701829. Epub 2017 May 5.

Abstract

Dimensionality reduction (DR) is a common strategy for visual analysis of labeled high-dimensional data. Low-dimensional representations of the data help, for instance, to explore the class separability and the spatial distribution of the data. Widely-used unsupervised DR methods like PCA do not aim to maximize the class separation, while supervised DR methods like LDA often assume certain spatial distributions and do not take perceptual capabilities of humans into account. These issues make them ineffective for complicated class structures. Towards filling this gap, we present a perception-driven linear dimensionality reduction approach that maximizes the perceived class separation in projections. Our approach builds on recent developments in perception-based separation measures that have achieved good results in imitating human perception. We extend these measures to be density-aware and incorporate them into a customized simulated annealing algorithm, which can rapidly generate a near optimal DR projection. We demonstrate the effectiveness of our approach by comparing it to state-of-the-art DR methods on 93 datasets, using both quantitative measure and human judgments. We also provide case studies with class-imbalanced and unlabeled data.

摘要

降维(DR)是标记的高维数据可视化分析的常用策略。数据的低维表示有助于探索数据的类别可分离性和空间分布。广泛使用的无监督 DR 方法,如 PCA,并不旨在最大化类别分离,而有监督的 DR 方法,如 LDA,通常假设某些空间分布,并且不考虑人类的感知能力。这些问题使得它们对复杂的类别结构无效。为了填补这一空白,我们提出了一种基于感知的线性降维方法,该方法在投影中最大化感知的类别分离。我们的方法基于基于感知的分离度量的最新发展,这些度量在模仿人类感知方面取得了很好的效果。我们将这些度量扩展为密度感知,并将其纳入定制的模拟退火算法中,该算法可以快速生成近乎最优的 DR 投影。我们通过在 93 个数据集上使用定量度量和人类判断将我们的方法与最先进的 DR 方法进行比较,证明了我们方法的有效性。我们还提供了具有类别不平衡和未标记数据的案例研究。

相似文献

1
A Perception-Driven Approach to Supervised Dimensionality Reduction for Visualization.
IEEE Trans Vis Comput Graph. 2018 May;24(5):1828-1840. doi: 10.1109/TVCG.2017.2701829. Epub 2017 May 5.
2
Interpreting High-Dimensional Projections With Capacity.
IEEE Trans Vis Comput Graph. 2024 Sep;30(9):6038-6055. doi: 10.1109/TVCG.2023.3324851. Epub 2024 Jul 31.
3
On the optimal class representation in linear discriminant analysis.
IEEE Trans Neural Netw Learn Syst. 2013 Sep;24(9):1491-7. doi: 10.1109/TNNLS.2013.2258937.
4
Visual Analysis of Class Separations With Locally Linear Segments.
IEEE Trans Vis Comput Graph. 2021 Jan;27(1):241-253. doi: 10.1109/TVCG.2020.3011155. Epub 2020 Nov 24.
5
Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA.
Patterns (N Y). 2022 Jun 24;3(8):100536. doi: 10.1016/j.patter.2022.100536. eCollection 2022 Aug 12.
6
Discriminative Dimension Reduction via Maximin Separation Probability Analysis.
IEEE Trans Cybern. 2021 Aug;51(8):4100-4111. doi: 10.1109/TCYB.2019.2912806. Epub 2021 Aug 4.
7
Semisupervised generalized discriminant analysis.
IEEE Trans Neural Netw. 2011 Aug;22(8):1207-17. doi: 10.1109/TNN.2011.2156808. Epub 2011 Jun 30.
8
Dimensionality Reduction for Hyperspectral Data Based on Class-Aware Tensor Neighborhood Graph and Patch Alignment.
IEEE Trans Neural Netw Learn Syst. 2015 Aug;26(8):1582-93. doi: 10.1109/TNNLS.2014.2339222. Epub 2014 Sep 12.
9
Learning Low-Dimensional Temporal Representations with Latent Alignments.
IEEE Trans Pattern Anal Mach Intell. 2020 Nov;42(11):2842-2857. doi: 10.1109/TPAMI.2019.2919303. Epub 2019 May 27.
10
Haisu: Hierarchically supervised nonlinear dimensionality reduction.
PLoS Comput Biol. 2022 Jul 21;18(7):e1010351. doi: 10.1371/journal.pcbi.1010351. eCollection 2022 Jul.

引用本文的文献

1
Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models.
Comput Graph Forum. 2023 Jun;42(3):423-435. doi: 10.1111/cgf.14841. Epub 2023 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验