IEEE Trans Vis Comput Graph. 2018 May;24(5):1828-1840. doi: 10.1109/TVCG.2017.2701829. Epub 2017 May 5.
Dimensionality reduction (DR) is a common strategy for visual analysis of labeled high-dimensional data. Low-dimensional representations of the data help, for instance, to explore the class separability and the spatial distribution of the data. Widely-used unsupervised DR methods like PCA do not aim to maximize the class separation, while supervised DR methods like LDA often assume certain spatial distributions and do not take perceptual capabilities of humans into account. These issues make them ineffective for complicated class structures. Towards filling this gap, we present a perception-driven linear dimensionality reduction approach that maximizes the perceived class separation in projections. Our approach builds on recent developments in perception-based separation measures that have achieved good results in imitating human perception. We extend these measures to be density-aware and incorporate them into a customized simulated annealing algorithm, which can rapidly generate a near optimal DR projection. We demonstrate the effectiveness of our approach by comparing it to state-of-the-art DR methods on 93 datasets, using both quantitative measure and human judgments. We also provide case studies with class-imbalanced and unlabeled data.
降维(DR)是标记的高维数据可视化分析的常用策略。数据的低维表示有助于探索数据的类别可分离性和空间分布。广泛使用的无监督 DR 方法,如 PCA,并不旨在最大化类别分离,而有监督的 DR 方法,如 LDA,通常假设某些空间分布,并且不考虑人类的感知能力。这些问题使得它们对复杂的类别结构无效。为了填补这一空白,我们提出了一种基于感知的线性降维方法,该方法在投影中最大化感知的类别分离。我们的方法基于基于感知的分离度量的最新发展,这些度量在模仿人类感知方面取得了很好的效果。我们将这些度量扩展为密度感知,并将其纳入定制的模拟退火算法中,该算法可以快速生成近乎最优的 DR 投影。我们通过在 93 个数据集上使用定量度量和人类判断将我们的方法与最先进的 DR 方法进行比较,证明了我们方法的有效性。我们还提供了具有类别不平衡和未标记数据的案例研究。