Department of Chemical Engineering, Columbia University, New York, NY 10027.
Department of Physics, Columbia University, New York, NY 10027.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5455-5460. doi: 10.1073/pnas.1611506114. Epub 2017 May 10.
SNARE proteins are the core of the cell's fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form -SNARE complexes ("SNAREpins") with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREpins, but how they cooperate is unknown and reports of the number required vary widely. To capture the collective behavior on the long timescales of fusion, we developed a highly coarse-grained model that retains key biophysical SNARE properties such as the zippering energy landscape and the surface charge distribution. In simulations the ∼65-kT zippering energy was almost entirely dissipated, with fully assembled SNARE motifs but uncomplexed linker domains. The SNAREpins self-organized into a circular cluster at the fusion site, driven by entropic forces that originate in steric-electrostatic interactions among SNAREpins and membranes. Cooperative entropic forces expanded the cluster and pulled the membranes together at the center point with high force. We find that there is no critical number of SNAREs required for fusion, but instead the fusion rate increases rapidly with the number of SNAREpins due to increasing entropic forces. We hypothesize that this principle finds physiological use to boost fusion rates to meet the demanding timescales of neurotransmission, exploiting the large number of v-SNAREs available in synaptic vesicles. Once in an unfettered cluster, we estimate ≥15 SNAREpins are required for fusion within the ∼1-ms timescale of neurotransmitter release.
SNARE 蛋白是细胞融合机制的核心,介导了所有已知的细胞内膜融合反应,而胞吐和运输则依赖于这些反应。当囊泡相关的 v-SNARE 与靶膜相关的 t-SNARE 形成 -SNARE 复合物(“SNAREpins”)时,融合就被催化,这是一个类似于拉链的过程,每个 SNAREpin 释放约 65 kT 的能量。融合需要多个 SNAREpins,但它们如何合作尚不清楚,而且报告的所需数量差异很大。为了捕捉融合的长时标上的集体行为,我们开发了一种高度粗粒化的模型,该模型保留了关键的生物物理 SNARE 特性,如拉链能量景观和表面电荷分布。在模拟中,约 65 kT 的拉链能量几乎完全耗散,形成了完全组装的 SNARE 基序,但未形成复合物的连接域。SNAREpins 自我组织成融合位点的圆形簇,由熵力驱动,熵力起源于 SNAREpins 和膜之间的空间静电相互作用。协同熵力扩展了簇,并以高力将膜拉到中心点。我们发现融合不需要 SNARE 数的临界值,而是由于熵力的增加,融合速率随 SNAREpins 的数量迅速增加。我们假设,这个原理在生理上被用来提高融合速率,以满足神经递质传递的苛刻时间尺度,利用突触小泡中大量可用的 v-SNARE。一旦进入无束缚的簇中,我们估计在神经递质释放的约 1ms 时间尺度内,融合需要至少 15 个 SNAREpins。