Suppr超能文献

微藻生物膜在废水处理和生物能源生产中的应用。

Applications of microalgal biofilms for wastewater treatment and bioenergy production.

作者信息

Miranda Ana F, Ramkumar Narasimhan, Andriotis Constandino, Höltkemeier Thorben, Yasmin Aneela, Rochfort Simone, Wlodkowic Donald, Morrison Paul, Roddick Felicity, Spangenberg German, Lal Banwari, Subudhi Sanjukta, Mouradov Aidyn

机构信息

School of Sciences, RMIT University, Bundoora, VIC Australia.

The Energy and Resources Institute, New Delhi, 110 003 India.

出版信息

Biotechnol Biofuels. 2017 May 10;10:120. doi: 10.1186/s13068-017-0798-9. eCollection 2017.

Abstract

BACKGROUND

Microalgae have shown clear advantages for the production of biofuels compared with energy crops. Apart from their high growth rates and substantial lipid/triacylglycerol yields, microalgae can grow in wastewaters (animal, municipal and mining wastewaters) efficiently removing their primary nutrients (C, N, and P), heavy metals and micropollutants, and they do not compete with crops for arable lands. However, fundamental barriers to the industrial application of microalgae for biofuel production still include high costs of removing the algae from the water and the water from the algae which can account for up to 30-40% of the total cost of biodiesel production. Algal biofilms are becoming increasingly popular as a strategy for the concentration of microalgae, making harvesting/dewatering easier and cheaper.

RESULTS

We have isolated and characterized a number of natural microalgal biofilms from freshwater, saline lakes and marine habitats. Structurally, these biofilms represent complex consortia of unicellular and multicellular, photosynthetic and heterotrophic inhabitants, such as cyanobacteria, microalgae, diatoms, bacteria, and fungi. Biofilm #52 was used as feedstock for bioenergy production. Dark fermentation of its biomass by DT-1 led to the production of 2.4 mol of H/mol of reduced sugar. The levels and compositions of saturated, monosaturated and polyunsaturated fatty acids in Biofilm #52 were target-wise modified through the promotion of the growth of selected individual photosynthetic inhabitants. Photosynthetic components isolated from different biofilms were used for tailoring of novel biofilms designed for (i) treatment of specific types of wastewaters, such as reverse osmosis concentrate, (ii) compositions of total fatty acids with a new degree of unsaturation and (iii) bio-flocculation and concentration of commercial microalgal cells. Treatment of different types of wastewaters with biofilms showed a reduction in the concentrations of key nutrients, such as phosphates, ammonia, nitrates, selenium and heavy metals.

CONCLUSIONS

This multidisciplinary study showed the new potential of natural biofilms, their individual photosynthetic inhabitants and assembled new algal/cyanobacterial biofilms as the next generation of bioenergy feedstocks which can grow using wastewaters as a cheap source of key nutrients.

摘要

背景

与能源作物相比,微藻在生物燃料生产方面已显示出明显优势。除了生长速度快和脂质/三酰甘油产量高之外,微藻还能在废水(动物、城市和采矿废水)中生长,有效去除其中的主要养分(碳、氮和磷)、重金属和微污染物,并且它们不与作物争夺耕地。然而,微藻用于生物燃料生产的工业应用的基本障碍仍然包括从水中去除藻类以及从藻类中去除水的高成本,这可能占生物柴油生产成本的30 - 40%。藻类生物膜作为一种浓缩微藻的策略越来越受欢迎,使得收获/脱水更容易且成本更低。

结果

我们从淡水、盐湖和海洋栖息地分离并表征了许多天然微藻生物膜。在结构上,这些生物膜代表了单细胞和多细胞、光合和异养生物的复杂群落,如蓝细菌、微藻、硅藻、细菌和真菌。生物膜#52被用作生物能源生产的原料。DT - 1对其生物质进行暗发酵,每摩尔还原糖可产生2.4摩尔氢气。通过促进选定的单个光合生物的生长,对生物膜#52中饱和、单不饱和和多不饱和脂肪酸的水平和组成进行了针对性修饰。从不同生物膜中分离出的光合成分用于定制新型生物膜,这些生物膜设计用于(i)处理特定类型的废水,如反渗透浓缩液,(ii)具有新不饱和度的总脂肪酸组成,以及(iii)商业微藻细胞的生物絮凝和浓缩。用生物膜处理不同类型的废水显示关键养分(如磷酸盐、氨、硝酸盐、硒和重金属)的浓度有所降低。

结论

这项多学科研究表明了天然生物膜、其单个光合生物以及组装的新型藻类/蓝细菌生物膜作为下一代生物能源原料的新潜力,它们可以利用废水作为关键养分的廉价来源生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26e3/5424312/2b02f35a70dd/13068_2017_798_Fig1_HTML.jpg

相似文献

1
Applications of microalgal biofilms for wastewater treatment and bioenergy production.
Biotechnol Biofuels. 2017 May 10;10:120. doi: 10.1186/s13068-017-0798-9. eCollection 2017.
2
Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production.
Biotechnol Biofuels. 2015 Feb 15;8:24. doi: 10.1186/s13068-015-0210-6. eCollection 2015.
3
Aquatic plant Azolla as the universal feedstock for biofuel production.
Biotechnol Biofuels. 2016 Oct 18;9:221. doi: 10.1186/s13068-016-0628-5. eCollection 2016.
4
Microalgal consortia for municipal wastewater treatment - Lipid augmentation and fatty acid profiling for biodiesel production.
J Photochem Photobiol B. 2020 Jan;202:111638. doi: 10.1016/j.jphotobiol.2019.111638. Epub 2019 Oct 29.
7
Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production.
Curr Opin Biotechnol. 2016 Apr;38:183-9. doi: 10.1016/j.copbio.2016.02.024. Epub 2016 Mar 5.
10
Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.
Biotechnol Biofuels. 2015 Nov 5;8:179. doi: 10.1186/s13068-015-0364-2. eCollection 2015.

引用本文的文献

2
Beyond movement: the dynamic roles of Type IV pili in cyanobacterial life.
J Bacteriol. 2025 Jul 24;207(7):e0008625. doi: 10.1128/jb.00086-25. Epub 2025 Jul 3.
3
Spatial propagation of temperate phages within and among biofilms.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2417058122. doi: 10.1073/pnas.2417058122. Epub 2025 Feb 4.
4
Metabolic insights from mass spectrometry imaging of biofilms: A perspective from model microorganisms.
Methods. 2024 Apr;224:21-34. doi: 10.1016/j.ymeth.2024.01.014. Epub 2024 Jan 29.
5
Abiotic factors improving fatty acid profiling of freshwater indigenous microalgae isolated from Kumaun region of Uttarakhand, India.
Braz J Microbiol. 2023 Dec;54(4):2961-2977. doi: 10.1007/s42770-023-01146-4. Epub 2023 Nov 9.
6
Potential of Porous Substrate Bioreactors for Removal of Pollutants from Wastewater Using Microalgae.
Bioengineering (Basel). 2023 Oct 9;10(10):1173. doi: 10.3390/bioengineering10101173.
7
Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges.
Front Bioeng Biotechnol. 2023 Sep 20;11:1193424. doi: 10.3389/fbioe.2023.1193424. eCollection 2023.
8
Development of yeast and microalgae consortium biofilm growth system for biofuel production.
Heliyon. 2023 Aug 25;9(9):e19353. doi: 10.1016/j.heliyon.2023.e19353. eCollection 2023 Sep.
9
Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies.
Microorganisms. 2023 Jul 29;11(8):1934. doi: 10.3390/microorganisms11081934.

本文引用的文献

1
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
2
Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.
Biotechnol Biofuels. 2015 Nov 5;8:179. doi: 10.1186/s13068-015-0364-2. eCollection 2015.
3
Biofilm-based algal cultivation systems.
Appl Microbiol Biotechnol. 2015 Jul;99(14):5781-9. doi: 10.1007/s00253-015-6736-5. Epub 2015 Jun 16.
5
Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.
Chemosphere. 2015 Oct;136:198-203. doi: 10.1016/j.chemosphere.2015.05.028. Epub 2015 May 22.
6
Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR.
J Hazard Mater. 2015 Oct 30;297:112-8. doi: 10.1016/j.jhazmat.2015.04.080. Epub 2015 Apr 30.
7
Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production.
Biotechnol Biofuels. 2015 Feb 15;8:24. doi: 10.1186/s13068-015-0210-6. eCollection 2015.
8
Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment.
Water Res. 2015 Mar 15;71:55-63. doi: 10.1016/j.watres.2014.12.049. Epub 2015 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验