Dibrova Daria V, Shalaeva Daria N, Galperin Michael Y, Mulkidjanian Armen Y
A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
Physiol Plant. 2017 Sep;161(1):150-170. doi: 10.1111/ppl.12586. Epub 2017 Jul 4.
The cytochrome bc (cyt bc) complexes are involved in Q-cycling; they oxidize membrane quinols by high-potential electron acceptors, such as cytochromes or plastocyanin, and generate transmembrane proton gradient. In several prokaryotic lineages, and also in plant chloroplasts, the catalytic core of the cyt bc complexes is built of a four-helical cytochrome b (cyt b) that contains three hemes, a three-helical subunit IV, and an iron-sulfur Rieske protein (cytochrome b f-type complexes). In other prokaryotic lineages, and also in mitochondria, the cyt b subunit is fused with subunit IV, yielding a seven- or eight-helical cyt b with only two hemes (cyt bc -type complexes). Here we present an updated phylogenomic analysis of the cyt b subunits of cyt bc complexes. This analysis provides further support to our earlier suggestion that (1) the ancestral version of cyt bc complex contained a small four-helical cyt b with three hemes similar to the plant cytochrome b and (2) independent fusion events led to the formation of large cyts b in several lineages. In the search for a primordial function for the ancestral cyt bc complex, we address the intimate connection between the cyt bc complexes and photosynthesis. Indeed, the Q-cycle turnover in the cyt bc complexes demands high-potential electron acceptors. Before the Great Oxygenation Event, the biosphere had been highly reduced, so high-potential electron acceptors could only be generated upon light-driven charge separation. It appears that an ancestral cyt bc complex capable of Q-cycling has emerged in conjunction with the (bacterio)chlorophyll-based photosynthetic systems that continuously generated electron vacancies at the oxidized (bacterio)chlorophyll molecules.
细胞色素bc(cyt bc)复合物参与醌循环;它们通过细胞色素或质体蓝素等高电位电子受体氧化膜醌醇,并产生跨膜质子梯度。在几个原核生物谱系以及植物叶绿体中,cyt bc复合物的催化核心由一个包含三个血红素的四螺旋细胞色素b(cyt b)、一个三螺旋亚基IV和一个铁硫 Rieske 蛋白(细胞色素b f型复合物)组成。在其他原核生物谱系以及线粒体中,cyt b亚基与亚基IV融合,产生一个只有两个血红素的七螺旋或八螺旋cyt b(cyt bc型复合物)。在此,我们展示了对cyt bc复合物的cyt b亚基的最新系统发育基因组分析。该分析进一步支持了我们之前的观点,即(1)cyt bc复合物的原始版本包含一个类似于植物细胞色素b的带有三个血红素的小四螺旋cyt b,以及(2)独立的融合事件导致了几个谱系中大型cyt b的形成。在寻找原始cyt bc复合物的原始功能时,我们探讨了cyt bc复合物与光合作用之间的密切联系。事实上,cyt bc复合物中的醌循环周转需要高电位电子受体。在大氧化事件之前,生物圈处于高度还原状态,因此高电位电子受体只能在光驱动的电荷分离过程中产生。似乎一个能够进行醌循环的原始cyt bc复合物已经与基于(细菌)叶绿素的光合系统一起出现,该光合系统在氧化的(细菌)叶绿素分子上持续产生电子空位。