Suppr超能文献

系统发育树的置信区间:一种使用自展法的方法。

CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.

作者信息

Felsenstein Joseph

机构信息

Department of Genetics SK-50, University of Washington, Seattle, WA, 98195.

出版信息

Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.

Abstract

The recently-developed statistical method known as the "bootstrap" can be used to place confidence intervals on phylogenies. It involves resampling points from one's own data, with replacement, to create a series of bootstrap samples of the same size as the original data. Each of these is analyzed, and the variation among the resulting estimates taken to indicate the size of the error involved in making estimates from the original data. In the case of phylogenies, it is argued that the proper method of resampling is to keep all of the original species while sampling characters with replacement, under the assumption that the characters have been independently drawn by the systematist and have evolved independently. Majority-rule consensus trees can be used to construct a phylogeny showing all of the inferred monophyletic groups that occurred in a majority of the bootstrap samples. If a group shows up 95% of the time or more, the evidence for it is taken to be statistically significant. Existing computer programs can be used to analyze different bootstrap samples by using weights on the characters, the weight of a character being how many times it was drawn in bootstrap sampling. When all characters are perfectly compatible, as envisioned by Hennig, bootstrap sampling becomes unnecessary; the bootstrap method would show significant evidence for a group if it is defined by three or more characters.

摘要

最近开发的一种称为“自展法”的统计方法可用于构建系统发育树的置信区间。它涉及从自身数据中有放回地重新采样数据点,以创建一系列与原始数据大小相同的自展样本。对每个样本进行分析,并将所得估计值之间的差异视为从原始数据进行估计时所涉及误差的大小。在系统发育树的情况下,有人认为合适的重新采样方法是在假定性状已由系统学家独立抽取且独立进化的前提下,保留所有原始物种,同时对性状进行有放回采样。多数规则合意树可用于构建一个系统发育树,展示出在大多数自展样本中出现的所有推断单系类群。如果一个类群出现的频率达到95%或更高,就认为支持它的证据具有统计学意义。现有的计算机程序可通过对性状赋予权重来分析不同的自展样本,性状的权重是其在自展采样中被抽取的次数。当所有性状完全兼容时,如亨尼希所设想的那样,自展采样就变得不必要了;如果一个类群由三个或更多性状定义,自展法会显示出支持它的显著证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验