Suppr超能文献

一种双杯[4]吡咯酶模拟物,可将两个氧阴离子紧密约束在一起。

A Bis-calix[4]pyrrole Enzyme Mimic That Constrains Two Oxoanions in Close Proximity.

机构信息

Department of Chemistry, The University of Texas at Austin , 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States.

Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark.

出版信息

J Am Chem Soc. 2017 May 31;139(21):7140-7143. doi: 10.1021/jacs.7b02329. Epub 2017 May 17.

Abstract

Herein we describe a large capsule-like bis-calix[4]pyrrole 1, which is able to host concurrently two dihydrogen phosphate anions within a relatively large internal cavity. Evidence for the concurrent, dual recognition of the encapsulated anions came from H NMR and UV-vis spectroscopies and ITC titrations carried out in CDCl/CDOD (9/1, v/v) or dichloroethane (DCE), as well as single crystal X-ray diffraction analyses. Receptor 1 was also found to bind two dianionic sulfate anions bridged by two water molecules in the solid state. The resulting sulfate dimer was retained in DCE solution, as evidenced by spectroscopic analyses. Finally, receptor 1 was found capable of accommodating two trianionic pyrophosphate anions in the cavity. The present experimental findings are supported by DFT calculations along with H NMR and UV-vis spectroscopies, ITC studies, and single crystal X-ray diffraction analyses.

摘要

在此,我们描述了一个大型胶囊状双杯[4]吡咯 1,它能够在相对较大的内部空腔中同时容纳两个二氢磷酸盐阴离子。来自于在 CDCl/CDOD (9/1, v/v) 或二氯乙烷 (DCE) 中进行的 H NMR 和 UV-vis 光谱以及 ITC 滴定,以及单晶 X 射线衍射分析的证据表明,被包封的阴离子可以同时被双重识别。受体 1 在固态中还被发现能够结合两个由两个水分子桥接的二价硫酸根阴离子。通过光谱分析证明,所得的硫酸二聚体保留在 DCE 溶液中。最后,受体 1 被发现能够在空腔中容纳两个三价焦磷酸根阴离子。目前的实验结果得到了 DFT 计算以及 H NMR 和 UV-vis 光谱、ITC 研究和单晶 X 射线衍射分析的支持。

相似文献

1
A Bis-calix[4]pyrrole Enzyme Mimic That Constrains Two Oxoanions in Close Proximity.
J Am Chem Soc. 2017 May 31;139(21):7140-7143. doi: 10.1021/jacs.7b02329. Epub 2017 May 17.
2
Calix[4]pyrrole-Based Molecular Capsule: Dihydrogen Phosphate-Promoted 1:2 Fluoride Anion Complexation.
J Am Chem Soc. 2022 Sep 21;144(37):16996-17009. doi: 10.1021/jacs.2c06284. Epub 2022 Sep 8.
4
Calix[6]pyrrole and hybrid calix[n]furan[m]pyrroles (n+m=6): syntheses and host-guest chemistry.
Chemistry. 2002 Jul 15;8(14):3148-56. doi: 10.1002/1521-3765(20020715)8:14<3148::AID-CHEM3148>3.0.CO;2-B.
5
Anion binding modes in meso-substituted hexapyrrolic calix[4]pyrrole isomers.
J Am Chem Soc. 2014 Jan 29;136(4):1520-5. doi: 10.1021/ja411391c. Epub 2014 Jan 17.
6
Calix[4]pyrrole[2]carbazole: a new kind of expanded calixpyrrole.
J Am Chem Soc. 2004 Dec 15;126(49):16073-6. doi: 10.1021/ja045218q.
7
Tetrathiafulvalene-calix[4]pyrroles: synthesis, anion binding, and electrochemical properties.
J Am Chem Soc. 2006 Feb 22;128(7):2444-51. doi: 10.1021/ja057367u.
9
Double-cavity calix[4]pyrrole derivative with enhanced capacity for the fluoride anion.
J Phys Chem B. 2005 Sep 22;109(37):17440-4. doi: 10.1021/jp0530707.
10
Calix[4]pyrrole as a chloride anion receptor: solvent and countercation effects.
J Am Chem Soc. 2006 Sep 20;128(37):12281-8. doi: 10.1021/ja064012h.

引用本文的文献

1
Trimerization of 1,2-Diaminocyclohexane Catalyzed by a Metal-Organic Cage Tandem Catalyst with Dual Biomimetic Active Sites.
Adv Sci (Weinh). 2025 Jul;12(27):e2501872. doi: 10.1002/advs.202501872. Epub 2025 May 8.
2
Bismacrocycle: Structures and Applications.
Molecules. 2023 Aug 13;28(16):6043. doi: 10.3390/molecules28166043.
3
Rational design of allosteric switchable catalysts.
Exploration (Beijing). 2022 Feb 23;2(2):20210095. doi: 10.1002/EXP.20210095. eCollection 2022 Apr.
4
Cyclo[2]carbazole[2]pyrrole: a preorganized calix[4]pyrrole analogue.
Chem Sci. 2022 Dec 26;14(5):1218-1226. doi: 10.1039/d2sc06376j. eCollection 2023 Feb 1.
5
New dimensions in calix[4]pyrrole: the land of opportunity in supramolecular chemistry.
RSC Adv. 2019 Nov 22;9(66):38309-38344. doi: 10.1039/c9ra07399j. eCollection 2019 Nov 25.
6
Protonation and anion-binding properties of aromatic sulfonylurea derivatives.
RSC Adv. 2021 Jul 7;11(39):23992-24000. doi: 10.1039/d1ra04738h. eCollection 2021 Jul 6.
7
Cage···Cage Interaction: Boron Cluster-Based Noncovalent Bond and Its Applications in Solid-State Materials.
JACS Au. 2021 Oct 8;1(11):2047-2057. doi: 10.1021/jacsau.1c00348. eCollection 2021 Nov 22.
8
"Anti-electrostatic" Halogen Bonding between Ions of Like Charge.
Chemistry. 2021 Dec 1;27(67):16530-16542. doi: 10.1002/chem.202102549. Epub 2021 Oct 1.
9
10
Molecular Engineering of Free-Base Porphyrins as Ligands-The N-H⋅⋅⋅X Binding Motif in Tetrapyrroles.
Angew Chem Int Ed Engl. 2019 Jan 8;58(2):418-441. doi: 10.1002/anie.201806281. Epub 2018 Nov 5.

本文引用的文献

1
Anions Stabilize Each Other inside Macrocyclic Hosts.
Angew Chem Int Ed Engl. 2016 Nov 2;55(45):14057-14062. doi: 10.1002/anie.201608118. Epub 2016 Oct 6.
2
Applications of Supramolecular Anion Recognition.
Chem Rev. 2015 Aug 12;115(15):8038-155. doi: 10.1021/acs.chemrev.5b00099. Epub 2015 May 21.
4
Unexpected self-sorting self-assembly formation of a [4:4] sulfate:ligand cage from a preorganized tripodal urea ligand.
Angew Chem Int Ed Engl. 2015 Apr 7;54(15):4566-70. doi: 10.1002/anie.201411857. Epub 2015 Feb 18.
5
Thermodynamic study of dihydrogen phosphate dimerisation and complexation with novel urea- and thiourea-based receptors.
Chemistry. 2014 Nov 24;20(48):15863-71. doi: 10.1002/chem.201404091. Epub 2014 Oct 5.
6
Inorganic pyrophosphatases: one substrate, three mechanisms.
FEBS Lett. 2013 Jun 27;587(13):1863-9. doi: 10.1016/j.febslet.2013.05.003. Epub 2013 May 16.
9
Polyatomic anion assistance in the assembly of [2]pseudorotaxanes.
J Am Chem Soc. 2012 Jul 4;134(26):10733-6. doi: 10.1021/ja301900s. Epub 2012 Mar 23.
10
Recognition and separation of sulfate anions.
Chem Soc Rev. 2012 Apr 21;41(8):3077-98. doi: 10.1039/c2cs15293b. Epub 2012 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验